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We derive the Hamiltonian structures of three theories: non-relativistic, special-relativistic, and general-relativistic adiabatic 
fluids, each in the Eulerian representation in Riemannian space (or Lorentzian spacetime), all by the same procedure using 
standard variational principles. The evolution in each case is generated by a Hamiltonian that is equivalent to that obtained 
from a canonical analysis. For the gravitational variables, the Poisson bracket has the usual canonical symplectic structure. 
However, for the fluid variables, the three theories all share the same Lie-Poisson bracket, when expressed in the appropriate 
spaces of physical variables constructed here. This shared Lie-Poisson bracket is associated to the dual of the semidirect-prod- 
uct Lie algebra of vector fields acting on differential forms. An immediate consequence of this shared structure is that each of 
these theories possesses an infinite family of conservation laws: the so-cailed "Casimirs" that belong to the kernel of the 
Lie-Poisson bracket. The role of these Casimirs in the study of Lyapunov stability (or dynamic stability) for fluid equilibria is 
discussed. The relationship of this approach to other approaches in the literature is also discussed. 

1. Introduction 

This paper constructs the noncanonical Ham- 
iltonian structure for general relativistic adiabatic 
fluids, by starting from a physically motivated 
action principle and using standard variational 
techniques. 

In general-relativistic (GR) theories, Hamilto- 
nian methods and initial-value procedures can be 
applied once the theory has been translated into 
3 + 1 (actually, n + 1) language, by using the so- 
called ADM decomposition due to Arnowitt, 
Deser and Misner [1]. The ADM formalism is 
reviewed in Fischer and Marsden [2], Isenberg [3], 
Isenberg and Nester [4], Isham [5], and Kuchar [6]. 
This approach starts from an action principle for 
the gravitational field and other fields, and leads to 
a Hamiltonian formalism, 

OtF= { H , F ) c ,  

for the dynamical evolution, where {, )¢ is the 
canonical (symplectic) Poisson bracket, H is the 
Hamiltonian, and F is any functional on the space 

of (canonically conjugate) dynamical variables. The 
ADM formalism has proven useful in the study of 
theoretical and numerical problems in the con- 
struction of space-time solutions from initial data, 
see, e.g., Isenberg [3] and York [7]. 

Arnowitt, Deser and Misner [1] (hereafter ab- 
breviated ADM) showed that the vacuum Einstein 
equations are Hamiltonian with a symplectic Pois- 
son bracket in terms of canonically conjugate 
gravitational fields gij and ~r'J, with i, j =  1,2,3. 
(See Fischer and Marsden [2] for a more extensive 
discussion of the Hamiltonian properties of the 
vacuum Einstein equations.) The ADM Hamilto- 
nian density is a linear combination (with, in 
general, time-dependent coefficients) of the well- 
known GR constraints. These constraints are han- 
dled by properly choosing the initial data, since 
the GR constraints are nondynamical: if they hold 
initially, they will continue to hold. The time- 
dependent coefficients in the Hamiltonian density 
are the ADM lapse and shift functions, which 
must be prescribed for all time along with the 
initial data for each space-time solution. 
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Kiinzle and Nester [8] (hereafter abbreviated as 
KN) showed via the ADM approach that the 
equations for general relativistic adiabatic fluids 
(GRAF) are Hamiltonian with a symplectic Pois- 
son bracket, when the fluid variables are repre- 
sented using Lagrangian coordinates regarded as 
maps of spatial points (what we will call Eulerian 
independent variables) to reference points (called 
Lagrangian independent variables). For the 
Lagrangian representation of GRAF, ADM tech- 
niques have also been applied recently by Moncrief 
[9] using the variational principle due to Taub [10]. 
A covariant Lagrangian representation of GRAF 
appears in Tulczyjew [11]. 

Bao, Marsden and Walton [12] (hereafter ab- 
breviated BMW) found heuristically that a 
noncanonical Poisson bracket involving a 
"Lie-Poisson" bracket for the fluid variables also 
exists for GRAF expressed in the (3 + 1) language 
of the ADM formalism. A natural question, of 
course, is how this newly-discovered Lie-Poisson 
bracket should be related to the symplectic Pois- 
son bracket obtained for GRAF in KN via the 
ADM approach. BMW suggest various ways of 
obtaining their Lie-Poisson bracket for GRAF 
from fluid descriptions in Lagrangian coordinates 
via the method of reduction. In particular, they 
suggest that there exists a map from the symplectic 
Poisson bracket in KN to their Lie-Poisson brac- 
ket, via reduction with respect to a certain (right) 
action of the group of diffeomorphisms of 
Lagrangian reference configurations, lifted to 
Lagrangian phase space. A different map is ex- 
plored in the present work. 

The present work constructs an explicit map 
from the symplectic Poisson bracket (obtained for 
GRAF in KN via the ADM approach using a fluid 
description in which Lagrangian coordinates are 
treated as Eulerian fields) to the Lie-Poisson 
bracket found heuristically in BMW: Elsewhere, 
Holm, Marsden and Ratiu [64] describe how this 
map fits into the mathematical framework of 
Marsden, Ratiu and Weinstein [14] and compare 
this map to the one suggested in BMW and dis- 
cussed for nonrelativistic fluids in Holm, 

Kupershmidt and Levermore [15], Marsden et al. 
[16], and Marsden, Ratiu, and Weinstein [14, 17]. 

More specifically, this paper systematically de- 
rives the Hamiltonian structures of nonrelativistic 
(NR), special relativistic (SR), and general relativ- 
istic adiabatic fluids (GRAF), each in the Eulerian 
representation, all by the same procedure using 
standard variational techniques as in ADM. The 
first objective of such a unified treatment is to 
keep the similarities, differences, and limiting 
processes among these three levels of description 
apparent at every stage. Another objective is to 
provide an explicit basis for: (1) extensions, such 
as seeking Hamiltonian structures for general rela- 
tivistic systems including additional physics, such 
as magnetohydrodynamics, electromagnetic inter- 
actions, and Yang-Mills interactions; and (2) 
"technology transfer," such as the use in general 
relativistic systems of Hamiltonian methods for 
studying Lyapunov stability as in Holm, Marsden, 
Ratiu and Weinstein [13], or for developing ap- 
proximation schemes using techniques from other 
fields, such as plasma physics, e.g., Whitham-aver- 
aged action principles as in Similon, Kaufman and 
Holm [18], but with the averaging done over the 
phase of high-frequency gravitational waves, in- 
stead of the phase of electromagnetic waves. 

As for the first objective, the main similarity is 
that the resulting Hamiltonian structures for the 
fluid variables in NRAF, SRAF, and GRAF all 
share a c o m m o n  Lie-Poisson bracket when ex- 
pressed in the appropriate space of variables con- 
structed here. The NRAF Lie-Poisson bracket is 
due to Iwinski and Turski [19], although it was 
rediscovered by Dzyaloshinsky and Volovick [20] 
and by Morrison and Greene [21] (who also treated 
N R  magnetohydrodynamics) .  The SRAF 
Lie-Poisson bracket is due to Bialynicki-Birula 
and Iwinski [22] for free-streaming pressureless 
fluids, and to Iwinski and Turski [19] for SRAF 
including pressure forces and electromagnetic in- 
teractions. The GRAF Lie-Poisson bracket is due 
to BMW. The Poisson structure shared by all three 
of these adiabatic fluids is the Lie-Poisson bracket 
shown in Holm and Kupershrnidt [23] to be asso- 
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ciated to the dual of the semidirect-product Lie 
algebra of vector fields acting on differential forms. 
(This type of Lie-Poisson bracket is given a group 
theoretical interpretation in Marsden, Ratiu and 
Weinstein [14, 17].) An immediate consequence of 
this shared structure is that each of these theories 
possesses an infinite family of conservation laws: 
the so-called "Casimirs" that belong to the kernel 
of the Lie-Poisson bracket. The role of these 
Casimirs in the study of Lyapunov stability for 
fluid equilibria is discussed at the end of this 
paper. 

There are two main differences between the 
Hamiltonian structures resulting for special rela- 
tivistic and general relativistic fluid descriptions. 
First, the gravitational fields gij and ~r'J appear in 
the Poisson bracket as a canonically conjugate 
pair, just as they do in the vacuum Einstein case. 
Second, the GR Hamiltonian density has the same 
constraint form as in the vacuum ADM case; 
although it does limit to the SRAF Hamiltonian 
density appropriately when gij is time indepen- 
dent, the ADM lapse is unity, the ADM shift 
vanishes, and then the gravitational coupling con- 
stant, k = 16~rG (G is Newton's constant), tends 
to zero. Thence, as c -2 tends to zero (c is the 
speed of light) the Hamiltonian density for SRAF 
tends to that for NRAF. We have made the depen- 
dence on k and c explicit everywhere in order that 
these limits are apparent. There also exist the 
much more subtle post-Newtonian "limits" (actu- 
ally, approximations) neglected here, but treated 
by KN and by Futamase and Schutz [24]. The 
constraint form of die GRAF Hamiltonian intro- 
duces subtleties into the Hamiltonian formalism 
and its relation to the initial value problem that 
are not discussed in the present work. For compre- 
hensive discussions of constraints in the GR initial 
value problem and reviews of the literature on this 
subject, see Isenberg [3] and York [7]. 

Besides the ADM approach, covariant action 
principles and Hamiltonian formulations for 
GRAF are also available in the literature. Co- 
variant action principles for GRAF in the 
Lagrangian representation are given in Taub [10, 

25-27], Kijowski and Tulczyjew [28], and 
Tulczyjew [11]. Such action principles for GRAF 
in the Eulerian representation are obtained by Ray 
[29, 30], Schutz [31, 32], and Schutz and Sorkin 
[33]. These authors use a covariant extension of 
the traditional Clebsch technique, which for non- 
relativistic fluids is given a final form in Seliger 
and Whitham [34]. Additional references for 
GRAF action principles appear in Misner, Thorne 
and Wheeler [35] (hereafter abbreviated as MTW). 
The covariant Clebsch method led Schutz [31, 32] 
to propose a symplectic Hamiltonian structure for 
GRAF based on using additional, nonphysical, 
Clebsch potentials. Kentwell [36] presents a co- 
variant Lie-Poisson bracket for GRAF in a given 
space-time via the Clebsch map approach of Holm 
and Kupershmidt [23], starting from the results of 
Ray [30] and Schutz [32]. Another covariant 
Lie-Poisson bracket formalism is studied by 
Marsden, Montgomery, Morrison and Thompson 
[37]. 

Remark .  Although there has been considerable 
progress in the development of noncanonical 
Hamiltonian structures in fluid dynamics since 
1980, the idea of noncanonical Poisson brackets in 
continuum physics is not new. A catalog of non- 
canonical Poisson brackets of Lie-Poisson type 
used in continuum physics before 1980 should 
include: Landau [38] in the macroscopic theory of 
superfluids; Arnold [35] in incompressible flow; 
Dashen and Sharp [40] and Goldin and Sharp [41] 
in the classical theory of current algebras; 
Bialynicki-Birula and Iwinski [22] in special rela- 
tivistic theories of both charged and neutral, but 
pressureless, fluids; and Iwinski and Turski [19] in 
special-relativistic, charged-fluid plasmas inter- 
acting both electromagnetically and thermody- 
namically. The last citation, of course, includes 
NRAF and SRAF. 

In fact, noncanonical Poisson brackets were in- 
troduced into classical mechanics long ago by Lie 
[42] in his study of general composition laws 
satisfying the Jacobi identity. A modern perspec- 
tive on Poisson structures is given in Weinstein 
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[43]. Applications of noncanonical Poisson brac- 
kets to the classical heavy top appear in Sudarshan 
and Mukunda [44] and Ratiu [451. 

Contents. This paper is organized into four sec- 
tions: section 2 treats NRAF; section 3 treats 
SRAF; section 4 treats GRAF; and section 5 
presents conclusions and final comments. Each 
section is organized in a parallel fashion into four 
to six subsections that treat: (1) the starting equa- 
tions of motion and notation; (2) introduction of a 
configuration space of position and velocity fields 
(these are the Lagrangian positions and velocities 
defined in Eulerian space); (3) an action principle 
in the Lagrangian configuration space; (4) the 
Legendre transformation to find the Hamiltonian 
density in the space of symplectic (canonically 
conjugate) fields; (5) definition of the map from 
the space of symplectic fields to the space of 
physical variables, such as the fluid mass density, 
specific entropy, and momentum density (this map 
determines the Lie-Poisson bracket and expresses 
the Hamiltonian density from step (4) as a 
functional in the space of physical variables); (6) 
calculation of the variational derivatives of the 
Hamiltonian with respect to the physical variables; 
(7) demonstration that using the Lie-Poisson 
bracket and Hamiltonian in the space of physical 
variables recovers the original equations of mo- 
tion. 

Form-invariance of the map in step (5) from the 
symplectic fields to the physical fields in Eulerian 
space in each of the three fluid theories results in 
form-invariance of the Lie-Poisson bracket ob- 
tained from the map. Consequently, tlae three fluid 
theories share the same Lie-Poisson bracket when 
expressed in the appropriate physical variables. 
Some of the implications of this shared structure 
for the dynamic stability of equilibrium solutions 
are discussed in section 5. Two appendices treat 
detailed calculations specific to the ADM for- 
malism for GRAF. Except for making the factors 
of c and k explicit, we follow the notation and 
conventions of MTW. 

2. Nonrelativistic adiabatic fluids 

2.1. Equations of motion and notation 

In adiabatic fluid dynamics, the fundamental 
variables are: the mass density P; the specific 
entropy 71; and momentum density M~, i = 
1, 2 . . . . .  n. The fluid moves through an n-dimen- 
sional Riemannian space, with positions x ~, i = 
1, 2 . . . . .  n, and metric tensor &j, i, j = 1, 2 . . . . .  n. 

In the nonrelativistic case, the fluid velocity v~ is 
related to the momentum density by 

Mi= vrgpvi, (2.1) 

where ~ - ' =  ~ .  The Eulerian hydrody- 
namics equations are expressed as 

1 OqtP= - - ( p u i ) ; i :  - -  ~ (pl/--goi),i, (2.2a) 

Ot n i (2.2b) ~- - - 0  " r / i ,  

1 
atv i - - vJv,;j - p p . , ,  q~.,, (2.2c) 

A¢ := (@j)  ;j = 4~rap, (2.2d) 

where partial time derivative is denoted by O/Ot, 
partial space derivative is denoted by subscript 
comma (e.g., &//ax~=~,~),  covariant derivative 
compatible with the time-independent Riemannian 
metric g~j (i.e., Otg~j = 0) is denoted by subscript 
semicolon ( ; ) ,  and we sum on repeated indices 
over their indicated ranges. Indices are raised as 
for d in (2.2a) by the inverse metric tensor g'J, 
which satisfies gOgjk = 8~ and gives v i= giJvj. Eq. 
(2.2a) is the continuity equation expressing con- 
servation of mass, and eq. (2.2b) is the adiabatic 
condition, so that each fluid element exchanges no 
heat with its surroundings. Eq. (2.2c) is the hydro- 
dynamic motion equation expressed in covariant 
form. The fluid pressure p is determined as a 
function of p and 7/from a prescribed relation for 
the specific internal energy e(p,*l) (i.e. from an 
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equation of state) via the first law of thermody- 
namics, 

where O '~ :----09tq A. We introduce definitions 
(2.4a-d) into the following action density: 

de = e o do + e~ d~ = p-Up do + Td~l, (2.3) . i f '= v~-[½plvl 2 -  p e ( p , ~ ) -  IO0]. (2.5) 

where T is the temperature. The motion equation 
(2.2c) also includes a Newtonian gravitational 
potential, 0, determined by (2.2d) as a functional 
of O and a function of x, provided we choose 
boundary conditions such that the Laplacian oper- 
ator A in (2.2d) is invertible. 

Variation of the corresponding action S =, f d t d " x  
.oq a with respect to Oa determines the canonical 
momentum variable PA conjugate to qA as 

8L _gr~Ovi(q_l)jA. (2.6) 
PA '= 80 a = 

2.2. Action principle and Legendre transformation 
to canonical variables 

We show next that eqs. (2.2a-d) follows from a 
stationary variational principle, 8S = 0, expressed 
in a space of variables different from those in 
(2.2a-d). Let us define Lagrange coordinates 
qA( x, t ), A = 1, 2 . . . . .  n, as time-dependent maps 
of spatial points x i to reference points qa. Then, 
density, specific entropy, and velocity are defined 
in terms of these Lagrange coordinates by the 
following expressions: 

# ( x , t ) f ~  = ~((  qX} )det(  OqA/Ox i) 

=: ~(q)  det ( q : ) ,  (2.4a) 

~7(x , t )=~ l ( {  qA} ) =.. ~ (q),  (2.4b) 

where ~ and T1 are prescribed functions of the 
argument q-'= (q  A} determined by the values of 
the Lagrange coordinates q A at some initial time, 
and qa satisfies 

Otq A + q~v j = 0, (2.4c) 

with q~ ,= OqA/OX y. Regarding (qjA) as an invert- 
ible matrix allows eq. (2.4e) to be solved for vJ as 

Therefore, by taking the matrix product of (2.6) 
with q],  the physical momentum density (2.1) is 
expressible as 

Mj = Vt--g ovj = -- PAOjq A. (2.7) 

We shall see that this type of momentum density 
relation is. a generic feature of our approach. 

One passes to the Hamiltonian formulation by 
Legendre transforming the action density (2.5), in 
which the velocities 4 A need to be expressed in 
terms of (Pa, qA). For this, we first rewrite (2.6) 
using (2.4d) as 

= ,  ",  (2.8) 

where, in the notation of Kiinzle and Nester [8] 
(abbreviated as KN), the quantity 

(A-s)A,=(q-i)Jg#(q-l)~ (2.9) 

is the pull-back metric under the map qa- Hence, 

v/g0¢ A = AAnp B, (2.10) 

v j = _ ( q - i ) J e a ,  (2.4d) where AAB(A-I)B c = 8C A and gabgbc = 8:. 
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We have, therefore, the following relations: In other words, the canonical equations 

1 1 
pVc~ I1"12 -'= --PAaAnPBpgr~ [by (2.10)] 

= PAgt A [by (2.4c)1 

= --PAq~V ] [by (2.7)l 

= ¢ M j  [by (2.1)] 

-- ov~lt, I 2 [by (2.1)] 

-- p ~ g  [MI 2. (2.11) 

Equating the first and last of these expressions 
implies IPI 2= IMI2; so the momentum magni- 
tudes are equal. Thus, the Hamiltonian that arises 
from Legendre transforming (2.5) and using (2.11) 
is 

H= f d"x 

+ {p,]}. 
(2.12) 

Note that this Hamiltonian is invariant under re- 
placing PA by -PA, which we do now for later 
convenience. This replacement removes the minus 
signs in (2.6) and (2.7). 

2.3. Map from canonical to physical fluid variables 

At this stage in the standard Hamiltonian for- 
malism for fluids in terms of canonically conjugate 
variables, the starting system should be shown to 
be expressible as OtF(~, q) = {H, F}c with canon- 
ical (symplectic) Poisson bracket 

{ H, F }c= f d,x ( ~F/SPA ) ' 
8F/Sq A 

(o 
X 8ff 0 ]lSH/SqS]" (2.13) 

~H ~H 
OtqA-- ~PA' OtPA = ---6qA ' (2.14) 

together with H given in terms of (PA, q A) by 
(2,12) should be shown to lead to the starting 
equations (after cumbersome algebraic manipula- 
tions, because of the complicated qA dependence 
of H). 

There is, however, an alternative and less 
cumbersome route for checking that the canonical 
equations (2.14) imply the physical motion equa- 
tions (2.2a-d) via the relations (2.4a-d). This route, 
which we now explain, uses the noncanonical 
Hamiltonian formalism in the space of physical 
variables, and leads to considerable insight into 
the mathematical structure of the physical equa- 
tions. 

We seek a Hamiltonian description of the fluid 
motion equations [in the present case (2.2a-d)] 
directly in terms of the physical variables [in this 
case M, #, 71]- Such a description will result pro- 
vided the following three requirements are satisfied: 

1) The canonical Poisson bracket (2.13) induces 
a noncanonical Poisson bracket (, } in the physi- 
cal space, in this case by the map 

mi= PAOiq A , ~b:=#v/-g=~(q)det(qfl), 
(2.15) 

7/= 

2) The Hamiltonian function in the canonical 
space can be expressed in terms of physical vari- 
ables only, in the present case through (2.15) using 
(2.11). 

3) This Hamiltonian function, H, expressed in 
terms of physical variables, generates in the physi- 
cal space correct equations of motion according to 
the rule F t = (H, F}, using the noncanonical 
Poisson bracket (,  } of requirement 1). 

The second and third of these requirements are 
self explanatory. The first requirement amounts to 
checking the following formula (see, e.g., Holm 
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and Kupershmidt [23]): 

D Z  ( D Z ) ' ,  (2.16) ~,(e) = b - ~ b  b - f  

where: ~ is the map from the canonical space with 
coordinates Y, into the physical space with coordi- 

(0 . i s  nates Z; b is the canonical matrix 0 
the Hamiltonian matrix in the physical space; 
~ ( B )  is computed by applying the map 0 to each 
matrix element of B; D Z / D Y  is the Fr6chet 
derivative of the variables Z with respect to the 
variables Y; and the symbol ~f stands for the 
adjoint with respect to the measure dnx = dx  ~ 
A . . .  A d x  n. 

In the present case, the Hamiltonian matrix in 
the space of physical variables which results from 
this procedure is (of. Holm and Kupershmidt [23]) 

MjOi + ajMi Pai -r/, i  
- e = O j b  0 0 , ( 2 . 1 7 )  

r/.j 0 0 

where r/,j := (Or//Ox j) and Oj is regarded now as 
a differential operator. The Poisson bracket corre- 
sponding to the Hamiltonian matrix (2.17) is given 
by 

In the present case, the variables ( Z )  are given in 
(2.15): 

M / = P  A aq,,, I b = P ( q ) x ,  r /=Tl(q) ,  (2.20) 

where q = { q A, A = 1, 2 . . . . .  n }, 

X = det (q,~), (2.21) 

and ~(q)  and ~(q)  are given functions. Then, we 
have 

D~ 
D q  A 

Db 
D q  A 

Db 
DPA = 

n~ 
- - =  PAOi, D p  A = q,i' 

8~ X + P~8~TX, Sj, (2.22) 

Dr/ Drl 0~ 
D p  A -- 0, = Dq a 0q A ' 

so that substituting eqs. (2.22) into (2.19) and 
using the standard identity 

0X A _  i 
X - 1 E  ~q,Aiq'J--SJ' (2.23) 

we obtain (2.17). 

{ H , F }  = - fd"x (,~F/SM,[(M), O]M,)SH + 

+ [(SFm,) a/, 

+(SF/Sr / ) r / . j ]SH/SMj} ,  (2.18) 

where 0 i operates on terms to the fight of it. 
To see how (2.17) arises, notice that applying 

formula (2.16) to the case when the matrix b is 
canonical as in (2.13), we obtain, for the Z i - Z j  
entry of the Harniltonian matrix ~(B)  

1' (B)z'-zJ= L-D- qA [ D-- A ] D- A ( Dqa ] J" 
(2.19) 

Remark. The Poisson bracket (2.18) is the natural 
Poisson bracket on the dual to the semidirect 
product Lie algebra D ( ~ [ A  ° • A n] (see, e.g., Holm 
and Kupershmidt [23]), where D = D(R")  repre- 
sents vector fields on R ,  (X] denotes dements of 
D)  and Ak =A~'(R ") denotes k-forms on R ~. D 
acts on itself by commutation of vector fields 
denoted by [,] and acts upon A k by Lie deriva- 
tion, denoted, e.g., X(~) for ~ ~ A k. The symbol (~) 
denotes semidirect product. The Lie algebraic 
commutator  corresponding to the Poisson bracket 
(2.18) is, thus, 

[(x; ~<o~ + ~<.>), (~;  ~<o~ + ~<.,)] 

= ( [X,  Xl; (X(~<°' ) -X(r;<°>))+(X(e; 'n' )  

-X(~'n'))). (2.180 
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Dual coordinates are: M~ dual to X~ ~ D, k dual 
to A °, and *1 dual to A n. 

Poisson brackets such as (2.18) associated to the 
dual of a Lie algebra are called "Lie-Poisson 
brackets," see Marsden et al. [16] for an exposition 
and Weinstein [43] for more detail. 

2.4. Hamiltonian formulation in physical 
f lu id  variables 

Using relations (2.11), the Hamiltonian (2.12) 
can be expressed in terms of physical variables 
(2.15) as 

(2.24) 

We rearrange the last two terms in (2.27) as fol- 
lows. Upon setting 

Yi := vJvi,j -- ½gjk,i viva = oJ( gikvk),j -- ½gjk,i vjvk 

= g, kvabkj + g,~,,;V:V* - ½g:k.,vJv k, (2.28) 

symmetrizing the middle term in (2.28) gives 

Y, = g,kVJVk.j + ½(g,i,k + ga, . j --  gik. ,)  vjvk, (2.29) 

which we recognize upon raising indices as 

y i _ _ i m  { i}  - - g  Ym=vJvij+, j k  vJvk=:vJvlJ' (2.30) 

i.e., the covariant derivative of v * in the direction 
vL Hence, the motion equation (2.26c) becomes 

The variational derivatives of this Hamiltonian are 

8 H  
- -  ~ O i, 8M, 

8 H  1 
= - ~ lv l  2 + e + P / O  + ep, (2.25) 

8H 
87 =tbT, 

where T is temperature, defined in (2.3). Substitut- 
ing the variational derivatives (2.25) into the 
Lie-Poisson bracket (2.18) leads immediately to 

0it3 = ( H,  15 } = - (#vJ) , j ,  (2.26a) 

0,*1 = { n ,  71 } = -*l  j r  j, (2.26b) 

cg t M  i = { H,  Mi } = - M,v{i - ( MivJ ), j 

- ~ ( -  ½1vl 2 + e + p / # + e p ) , i + k T ~ . , .  

(2.26c) 

Eqs. (2.26a, b) reproduce (2.2a, b), the continuity 
equation and adiabatic condition, respectively. Eq. 
(2.26c) can be re-expressed in terms of velocity to 
recover (2.2c). Using (2.26a) and (2.3) we find 
from (2.26c) that 

1 
Otv,= - - ~ p . , - e p , , - v - / v i . j +  ½gjk,,VJV k. (2.27) 

1 i ,  "" o y =  - -~g p , j  - g " % -  v'v';:, (2.31) 

which reproduces (2.2c). 
Thus, the Lie-Poisson bracket (2.18) and Ham- 

iltonian (2.24) yield the nonrelativistic adiabatic 
fluid (NRAF)  eqs. (2.2a-c) directly in terms of the 
Eulerian physical variables. Since we have already 
seen via (2.16) that the map (2.15) is canonical (in 
the sense of preserving Poisson brackets), the 
Hamilton equations (2.14) will also imply the fluid 
equations (2.2a-c). 

2.5. R e m a r k  on Casimir functionals of  the 
Lie-Poisson bracket (2.18) 

First, observe that using (2.26a) allows (2.26c) to 
be re-expressed as 

a,v ,= - (v,v, , +  v,v:,) 

- ( - ½ 1 v l 2 + e + p / p + ~ ) , +  T K i .  (2.32) 

Notice that the first term on the right-hand side of 
(2.32) is the Lie-derivative with respect to velocity 
of the circulation one-form v~ dx  ~, namely 

. ~ v ( v i d x i ) = ( v J v i , j + v j v { i ) d x  '. (2.33) 
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Consequently, the motion equation (2.32) can be 
written as 

0t(vidxi) = -.~,,(v, dx i) 

-d ( - ½1vl 2 + e + p/p + ,/,) + Td~ (2.34) 

in terms of the Lie derivative, .Z~, and the spatial 
exterior derivative, d. Likewise, eqs. (2.26a, b) can 
be expressed as 

tgt ( fi d"x)  = -.La(~b d"x),  (2.35a) 

0t~ = ---o~v~. (2.358) 

Now, taking the exterior product of d times (2.34) 
with d times (2.35b) (using the properties d 2 = 0 = 
[d, Aa]) implies that the three-form d(v~dx ~) A d*i 
=: ~12d3x, with 12 .'= fi-x curl v .  V~, is conserved 
along flow lines, i.e., 

0,( ~12 d3x) = -.LP,,(~12 d3x). (2.36) 

Consequently, in three dimensions (n = 3) we may 
use (2.35a) and (2.36) to show that 

0,12 = -A°~12, (2.37) 

for the scalar function 12 defined above to be 

12 = iS-1 curl v" I7,/. (2.38) 

Thus, we have the following conservation law for 
adiabatic fluid flow in a three-dimensional 
Riemannian space: 

o,c=o, c--fd3x# (n,12), (2.39) 

"Casimir" in the sense that 

( C , F } = 0 ,  VF((Ib,*/ ,Mi} ). (2.40) 

That is, C is in the kernel of the Lie-Poisson 
bracket (2.18) and, thus, is conserved indepen- 
dently of the choice of Hamiltonian in the space of 
physical fluid variables { ~/, fi, M i }. The advected 
quantity 12 is the generalization for three-dimen- 
sional Riemannian space and compressible fluids 
of Ertel's invariant, the so-called potential vortic- 
ity (see, e.g., Kochin, Kibel, and Roze [46]). 

The conservation law (2.39) can also be under- 
stood as resulting via Noether's theorem from the 
symmetry of the action density (2.5) under the 
transformations in the Lagrangian configuration 
space (qA,/IA) that leave invariant the Eulerian 
variables { t5, ~, M, }. Such so-called "trivial" 
transformations (in the nomenclature of Friedman 
and Schutz [47]) can be considered as gauge trans- 
formations under the group of diffeomorphisms of 
the Lagrangian fields qA preserving the value of 
the density IS, specific entropy 7/, and velocity v ~ at 
each Eulerian point (cf. Marsden, Ratiu, and 
Weinstein [],4]). The corresponding conservation 
law is then (2.39). Explicitly, the allowed infinitesi- 
mal transformations are those satisfying (see Holm 
[48]) 

p 0 [~(q)SqA ] =0, 
80 = ~(q)  Oq A 

8~ = 8q A = O, 

i -tx~ BSq A 
8v i = - ~ q  ) A - - - ~  =0, 

(2.41a) 

(2.41b) 

(2.41c) 

for an arbitrary function • of the two indicated 
arguments, ~/and 12. 

The presence of the arbitrary function • in 
(2.39) is a clue that this conservation law is kine- 
matical; depending only on having expressed the 
Hamiltonian in the space of physical variables, 
rather than depending on the dynamics generated 
by the particular choice of Hamiltonian (2.24). 
Indeed, the conserved functional C in (2.39) is a 

That is, the action 

s = f d t d"x .o~', (2 ,42) 

with ~ given in (2.5) is invafiant under the infini- 
tesimal transformation 

qa(x,  t) ~ ~lA(X, t) = qa(x, t) + 8qa(x, t), 

(2.43) 
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with 

1 
8q A - ~(q)  curlq [ f ( ~ ) l T q a ( q ) ]  (2.44) 

satisfying (2.41a-c), where f (~ )  and a(q )  are arbi- 
trary functions, and subscript q on grq denotes a 
gradient in Lagrangian coordinates. The corre- 
sponding conserved density is then ibm(12) with 12 
given in (2.38) and • an arbitrary function. 

Recently, Casimirs such as (2.39) have been 
used to study the Lyapunov stability of fluid and 
plasma equilibria in a variety of situations, see, 
e.g., Abarbanel et al. [49, 50], Arnold [51, 52], 
Hazeltine et al. [53], Holm, Marsden, Ratiu and 
Weinstein [13, 54], and Holm and Kupershmidt 
[55]. Further comments concerning Casimirs and 
Lyapunov stability are given at the conclusion of 
this paper, in section 5. 

3. Special relativistic adiabatic fluids 

3.1. Equations of  motion and notation 

The special relativistic generalization of the 
adiabatic fluid equations (2.2a-c) in Riemannian 
space is, in Lorentz-covariant form, 

(p /uS) ;  s = 0, (3.1a) 

u%lf, s = 0, (3.1b) 

TS~; ~ = 0, (3.1c) 

where u s, with p = 0,1 . . . . .  n (Greek indices run 
from 0 to n), denotes the timelike Lorentz vector 
for the fluid velocity, which becomes u ° ffi 1, u i = 0, 
i = 1, 2 . . . . .  n, (Latin indices run from 1 to n) in 
the reference frame of the fluid. The vector u s 
satisfies 

gs~uSu" = - 1. (3.2) 

The space-time metric tensor gs, is given by the 
expression - d'r 2 = g /~ ,  d x s d x" for the proper time 
interval, x ° =  ct being the real timelike coordi- 

nate. In (3.1), covariant derivatives with respect to 
the space-time metric g~ are denoted by a semi- 
colon subscript ( ;) .  Ordinary partial derivatives 
are denoted by a comma subscript (,). Subscript f 
denotes variables as measured in the reference 
frame moving with the fluid. For example, Pt is 
proper mass density and ~f is proper specific 
entropy, each in the fluid frame. The quantity T ~ 
in eq. (3.1) is the energy-momentum tensor, given 
by 

T s~ = p f c 2 w u S u  p + p f g ~ ,  (3.3) 

where c is the speed of light, pf is the pressure in 
the fluid frame, and w is the relativistic specific 
enthalpy, defined as 

w = 1 + ( e f + p f / / p f ) c  -2,  (3.4) 

with specific internal energy in the fluid frame er 
prescribed by an equation of state ef(pr, TIf) satis- 
fying 

d e f  = Tf dr/f  + ( p f )  - 2pf d p f .  (3.4') 

Eq. (3.1a) expresses relativistic mass conservation, 
eq. (3.1b) is the adiabatic condition for the relativ- 
istic fluid, and (3.1c) expresses the covariant con- 
servation laws for energy and momentum. There is 
a well-known redundancy among eqs. (3.1a-c): a 
linear combination of eqs. (3.1a, b) can be ob- 
tained from the projection of (3.1c) along u~ (see, 
e.g., Taub [56]). Contracting u s with (3.1c) using 
T s~ given by (3.3) and the condition u~u~; ~ = 0 
(implied by (3.2)) contributes the relation 

0 ~-~ UsTS='; =, 

= + s + , , ' v f , ,  

= - + u'v,,, 

= - c 2 w ( o , = ' ) ; , -  (3.5) 

where we have used the definition of w in (3.4) 
and the thermodynamic relation (3.4') in the fluid 
frame for the last step. According to (3.5), the 
projection of (3.1c) parallel to u~ and one of either 
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(3.1a), or (3.1b), implies the remaining equation in 
(3.1a, b). 

Expanding (3.1c) using the chain rule gives 

0 --- T ~ ;p 

= + g Pf,~. 

(3.6) 

Upon lowering the free index # in (3.6) and using 
(3.1a), we have (3.1c) in the form we shall use: 

( ) 0~--- T ~ ; ~ , - ~ - p f u  J' c2wul~ ;,+Pf,~. (3.7) 

The n spatial components of (3.7) comprise the 
relativistic counterpart, of the motion equation 
(2.2c) (excluding the Newtonian potential); the 
time component of (3.7) is a consequence of the 
space components. 

For the purposes of Hamiltonian formulation, 
we express eqs. (3.1a, b) and the n space compo- 
nents of eq. (3.7) as a dynamical system in a fixed 
frame. This we choose to be the laboratory frame, 
in which u ~' becomes u ° = ~,, u ~ -- ,/v~/c, with 

" / : =  (1 - vy/c2) -1/2, (3.8) 

where v~ = g~jv j and gij denotes the (fixed, time- 
independent) spatial Riemannian metric. In the 
laboratory frame, fluid state variables will be un- 
adorned and related to their fluid-frame counter- 
parts by ~ = ,/f and p = YPe. Upon using u ~ = 
y(1, v~/c), dtgu= 0, and the identity (pfu~).~ = 

(v/gpfu~).~/l/~,  the dynamical system resulting 
from (3.1) in the laboratory frame becomes, with 

= , = , , ,  

atb= -(pv'),,, (3.9a) 

atrl = - 71, i vi, (3.9b) 

at('~WVi)-~ --oJ(vwui);j - ~gp Pf,i' (3.9c) 

where subscript semicolon ( ; )  adjoined to Latin 
indices denotes covariant derivative compatible 
with the Riemannian metric tensor gij, as in sec- 
tion 2. In the nonrelativistic limit (c -~ --* 0), ~, = 1 
+ iV(c-2), w = 1 + ¢9(c-2), and as c -2 tends to  
zero each equation in (3.9a-c) tends to its nonrela- 
tivistic counterpart in (2.2a-c). 

3.2. Action principle and Legendre transformation to canonical variables 

As an auxiliary step in constructing the Hamiltonian formalism for eqs. (3.9a-c), we introduce a 
stationary variational principle, 8S = 0, expressed in a space of Lagrangian fields qA(x, t), A -- 1,2 . . . . .  n, 
just as in section 2. First, we define the variables t3, ~/, v i in terms of these Lagrangian fields, via expressions 
analogous to (2.4a-d), namely, 

~ ( x , t ) = ~ ( q ) d e t ( q ~ ) ,  , l (x , t )=~l (q) ,  ~lA +q~vJ=O, vJ= - ( q - 1 ) J q  A, (3.10a, b, c, d) 

where q :  = aqA/Ox ~, ;IA= OqA/Ot, (q-1)j  is the matrix inverse of q• [so that (q-1),~q: = 8/ and 
(q-1)~qfl=Sff], and ~(q) and ~/(q) are prescribed functions of q := (qa}.  We introduce definitions 
(3.10a-d) into the following Lagrangian density: 

.£a= _ ~ / ~ - e ( p , , ~ t ) "  (3.11) 

Here, e is the total energy density for special relativity, 

= p,(c + e(p, , ,1 , ) ) ,  (3.12) 
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so that, by (3.4'), 

de = ( c 2 + ef + p f /o f )  dpf + pfrf d~, = c2wdpf + pfrf d~f. (3.13) 

Variation of the action S = f d t d " x  .Z  from (3.11) with respect to 0 A yields the canonical momentum 
variable PA, conjugate to qA, as 

~JL=_~[~ O~f~lt Op..._._.~f bO'[-10l) j _~/~C2W(~)//r~)(_~Oj)(_(q_l)j ) 
PA := ~O A 0./_ 1 av ] aO A = 

= - b y w v j ( q - ' ) j = :  - O v j ( q - ' ) j ,  (3.14) 

where we have used (3.13), the definitions Of = Jb(Trg~ ' ) -  x and "/-1 = (1 - v i vi/c 2)1/2, and have introduced 
the notation 

0 ,= ~,rw = ~ O f r 2 w .  (3.15) 

By taking the matrix product of eq. (3.14) with q~, we find the physical momentum density in the 
laboratory frame, M i, to be (of. (2.7)) 

Mi:= ~c T, ° [by (3.3)] =~v i [by (3.14)] =--PAq~.  (3.16) 

We now seek the canonical Hamiltonian formalism in terms of (PA, qA). TO solve for 0 A in terms of 
(PA, qA), we first rewrite PA in (3.14) using (3.10d) as 

PA = [ - O ] [ - g , k ( q - ' ) ~ O " ] [ ( q - 1 ) ~ ]  = 0 ( A - l )  AnO n, (3.17) 

where A-  x is defined as in (2.9). Hence, with A A B defined by AABtA-1~ -- 6 A J Bc - c,  we have 

AAnp n = ~gl A (3.18) 

and we find the following relations: 

0 - l l p l  2 := O-~PAaAnP n [by (3..18)] -- PAO A [by (3.10c)] -- -PAqPv' [by (3.16)] 
= M y  [by (3.16)] = ~lvl 2 [by (3.16)] = b-XlMI 2, (3.19) 

where we have introduced the momentum magnitudes IPI 2-- PAAaBPn and IMI 2= M~giJMj related by 
}PI 2 - IMI 2, as shown in (3.19) [cf. (2.11)]. 

Using (3.18), we see that Paq a = ~-1 ip 12, so that the Hamiltonian obtained by Legendre transforming 
the action density (3.11) takes the form 

H= f d-x f d"x [0 'lel + V  (Pf, .,)1 (3.20) 

Here/)  is given in (3.15) and depends on the relativistic factor, 7, and the other dynamical variables. By the 
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definition of ~, in (3.8) we have 

1 - -t -2 = c-2o~v ' [by (3.10d) and (2.9)] = C-2(A-X)ABqAqn [by (3.18)] 

= TM 2 

13 

( 3 . 2 1 )  

Thus, y is expressible in terms of ~ and the momentum magnitudes. Consequently, either for the canonical 
variables (PA, qA), or for the noncanonical physical variables, {ib, *i, Mi}, the only implicit dependence in 
the Hamiltonian (3.20) is in ~. 

3.3. Map from canonical to physical fluid variables 

We could now consider the relation to the fluid eqs. (3.9a-c) of the canonical equations that follow from 
the Hamiltonian (3.20) in the space of canonical variables (PA, qA). However, the additional complexity 
due to implicit dependence in ~ makes this task even less perspicuous than in the earlier, nonrelativistic 
case in section 2. Instead, just as in that earlier case, we shall seek a Hamiltonian description of the fluid 
motion equations [in the present case, (3.9a-c)] directly in terms of the physical variables [in the present 
case, the relativistic laboratory-frame quantities {~, 71, Mi} ]. For this, we first replace PA by (--PA) in the 
Hamiltonian (3.20) (which leaves the Hamiltonian invariant) and in eq. (3.16) (which conveniently changes 
the last minus sign in (3.16) to plus). Then, collecting equations (3.10a, b) and the revised eq. (2.16) results 
in the following analog of the Lagrange-to-Euler map: 

Mi=PAa,qA, i b = ~ ( q ) d e t ( q / ) ,  * i=~(q) ,  (3.22) 

which is identical in form to the map (2.15), but now the earlier nonrelativistic variables on the left-hand 
sides of the map are replaced by relativistic, laboratory-frame variables. The Hamiltonian functional (3.20) 
in the canonical space can be expressed in terms of physical variables only, through the last equality in 
(3.21), resulting in 

H= f d"x [(IMI2/  + (3.23) 

where # f =  ~(.y~/~)--I and *it = *i. The Hamiltonian density in (3.23) is related to T °°, the time-time 
component of T~'" in (3.3), by 

~,~:= IMI2/~ + VCge(Pt, *it)-- V~ TOO- (3.24) 

This relation is shown by a direct computation, which produces a convenient expression for (3.23) as a 
bonus. In the laboratory frame, we have g00 __. _ 1, so that 

Vrg-T °° [by (3.3)] = V~(p, c2w,t2-pt)= V~-[(~, 2 -  1)pfc2w + pfc2w-pt] [by (3.4) and (3.12)] 

= v/-g[(7 , 2 -  1)pfc2w + e(p,,*i,)] [by (3.15) and (3.21)] 

= vlg [ lMl2/c2ptc2w + t(Pt' *it) l [bY 

] = ~-g Vr~.yw + ~(o~,*it) [by (3.15)] = IMI2/~+ ~/-g-~(Ot,*i,). 
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This computation proves relation (3.24), demonstrates the physical significance of the Hamiltonian density, 
.,~', and results upon using (3.15) in the following convenient expression for the Hamiltonian (3.23): 

H= f d"xC~T°°= f d"x(c20-¢-gpf). (3.25) 

3.4. Hamiltonian formulation in physical f luid 
variables 

Just as in section 2, the "Lagrange-to-Euler" 
map (3.22) takes the canonical Hamiltonian matrix 
in (2.13) to that in (2.17), resulting in the 
Lie-Poisson bracket (2.18). The variational deriva- 
tives of the Hamiltonian (3.23) with respect to the 
physical variables are shown below to be 

aH I = v i, (3.26a) 
aM, 
aH ab = C2W//'~, (3.26b) 

aH 
= ¢-gprTf. (3.26c) 

an 

We shall soon see that substituting the variational 
identities (3.26a-c) into 0iF = { H, F } with 
Lie-Poisson bracket (2.18) and Hamiltonian (3.23) 
will yield the relativistic adiabatic system in the 
laboratory frame (3.9a-c). However, first we show 
how these identities arise. By (3.4) and (3.4'), we 
find, as a preliminary step, that 

-z Opt [ -10pf ) c2dw=pf " -~ '#fdpf+[#,-~ ' f+ Tf d'r/f. 

(3.27) 

Also, from (3.15) and (3.21) we have 

1 -(bw/0)2=l - 7  - 2 =  Ivl2/c 2= IMI2/(cO) 2, 
(3.28) 

so that 

0 = ¢(bw) 2 + I M I 2 / c  2 . (3.29) 

Using formulae (3.27), (3.29), and ~b = 0ffv/g, 7/= 

,/f we obtain from (3.25) 

a H  c2 tg~ i)pf 
a-if, = aM, v~ aM, 

=c-- -~(Mi /c2+.~2w-- i  

apf (C2f) OW 
= M'/~ + T - i f , ,  v aof 

= M i/0 = v i, 

Ow Opt)  Op t Op t 
apt OM,, - ~ Opt aM, 

llf~ O p f 

(3.30) 

which proves (3.26a). Next, by (3.27) and b = 
pryy/g -, 

a H  c 2 O(kw)  Opf 
af, = T f'w a~, V~ af, 

c2 ( a._~ ) ap, 
= -  w+~ -vq a~ 

7 

~ 1 2  aw ap, l ap, 
=C2W/T"F Vg[cpf~fp f  apf] ap 

= c2w/ ' r ,  (3.31) 

which is (3.26b). Finally 

8H C 2 ^ O~w Opf 
8---4 = ~ p w - ~ -  - ¢~ o,1 

c z ^ Ow Opt 
= y P ~  - ¢g a~ 

~ l  ~aw ap, t =vg~p,c ~ a~ l 

= v/gpfTf,  (3.32) 

which is (3.26c). 
Substituting the variational derivatives (3.26a-c) 

into the Lie-Poisson bracket (2.18) leads im- 
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mediately to 

0,~ = ( H, ~ } = - (~M), j ,  (3.33) 

0,*/= { H, 71 } = "~ , jM,  (3.34) 

a,m,= (H, M,} 
-1^  2 =-Mjo/i-(Miv ).j-v w,  

- - p c 2 w ( T - t ) , i +  y-l~Tfrl , i .  ( 3 . 3 5 a )  

Substituting (3.27) into (3.35a) leads to 

O tM, = - MjvJ, - ( M, vJ ) , j  - qr-g pf, i  

- b c 2 w ( 7 - t ) , i  . (3.35b) 

Using (3.33) and the definition Mi = bTwv i in eq. 
(3.35b) yields 

Ot('~Wl3i) m --'~WOjl)/,- OJ('~WOI),j 

_ 11~. p f , i _c2w(7 -1 ) i "  (3.36) 
p 

preserves Poisson brackets according to (2.16)), 
that the Lagrangian equations in the canonically 
conjugate variables (PA, qA) are also equivalent to 
eqs. (3.9a-c). 

Remarks. A) The Lie-Poisson bracket (2.18) for 
SRAF appears in Iwinski and Turski [19], where 
electromagnetic interactions via MaxweU's equa- 
tions are included, as well. (Iwinski and Turski 
[19] also presents a Lie-Poisson bracket for the SR 
MaxweU-Vlasov system, which is not discussed 
here.) The present derivation of this Lie-Poisson 
bracket for SRAF illustrates its relation to the 
corresponding symplectic bracket in Lagrangian 
fields, qA(x, t) and Pa(x, t). 

B) Using (2.27), the motion eq. (3.36) can be 
expressed in Lie-derivative form as 

Ot ( Twoidx i) = -~c~v( Twoi dx i) - d ( c 2 w / 7 )  

+7-1TfdT1, (3.40) 

Now, (7-1).; in (3.36) is given by 

( 7 - 1 ) , i  = ~vjvJ, i - J--zvJv*g,k i ,  (3.37) 
2C z J , 

so that (3.36) becomes 

a,(,/wo,) = - oJ ( ' rwo , ) . j -  

+ ½"rwoJo%,.,. (3.38) 

Then, rearranging terms in (3.38) as in (2.28-30) 
g i v e s  

0t(Twv/) = - vJ (Two) ; j  - ~.gO pt.i, (3.39) 

which is the equation of motion (3.9c). 
Thus, the Lie-Poisson bracket (2.18) and Ham- 

iltonian (3.25) yield the special relativistic adia- 
batic fluid eqs. (3.9a-c), directly in terms of the 
Eulerian physical variables, { ~, 7, Mi}. This im- 
plies, because the map (3.22) is canonical (i.e., 

where d denotes exterior derivative and £,"~ is the 
Lie derivative with respect to the vector field v~Oi. 
Similarly, eqs. (3.9a, b) can be expressed as 

0 t ( t5 d"x) = -.o~'~(15 d"x), (3.41a) 

0t7/= --oq°Jl. (3.41b) 

As a consequence of the properties d 2 -- 0 = [d, 0~] 
of the exterior and Lie derivatives, and the anti- 
symmetry of the exterior product, we find from 
(3.40) and (3.41a) that the three-form d(Twv~dx i) 
^ dr/ is  preserved along flow lines, i.e. 

Ot[d (Twvidx i) A dT/] = -.£a~ [d(?wvidx i) A dT/]. 

(3.42) 

Consequently, in three dimensions (n = 3) we find 
as in section 2.5 that 

tgt~ = -.£a 12, (3.43) 

where the scalar 12 is now defined to be 

12 = (~b)-lcurl (Twv). ~r~l. ( 3 . 4 4 )  
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Thus, for n = 3 we have the following conservation 
law for special relativistic adiabatic fluids, aC/Ot 
= 0  for 

C -- f d 3 x ~ O ( , ,  ~) ,  (3.45) 

for an arbitrary function • of the two indicated 
variables in (3.45). The conserved functional C in 
(3.45) is the special relativistic version of the 
"Casimir" functional (2.39) for the Lie-Poisson 
bracket (2.18). Its use for determining stability 
criteria for special relativistic fluids is discussed in 
Holm and Kupershmidt [55, 57]. 

C) Having understood the special relativistic 
case, we are now in a position to study the Ham- 
iltonian structure of general relativistic adiabatic 
fluids, by using essentially the same method again, 
modulo changes to include the metric tensor gq as 
a dynamical variable. 

4.  G e n e r a l  re la t iv i s t i c  ad iabat i c  f lu ids  

The aim of this section is to use the Poisson 
structure algorithm developed in the previous two 
sections to construct the Hamiltonian formalism 
for general relativistic adiabatic fluids in terms of 
the physical fluid variables and canonical gravita- 
tional variables by using the formalism of 
Arnowitt, Deser and Misner [1] (abbreviated as 
ADM). 

A number of differences from the special relativ- 
istic case can be anticipated for the Hamiltonian 
formalism of general relativistic adiabatic fluids, 
In particular, 

1) There are no preferred reference frames, as 
there are in the Minkowski case (the fluid and 
laboratory frames). The dynamics will be consid- 
ered as taking place on arbitrary spacelike hyper~ 
surfaces. 

2) The metric tensor, go, induced on such a 
spacelike hypersurface will be a dynamical vari- 
able, i.e., cgtgij d~ O. 

3) Not all of the Einstein field equations will be 
dynamical: while the induced metric go de- 

termines the dynamics of the field, the space-time 
.metric components g~0, # = 0,1 . . . .  , n, may be 
chosen arbitrarily, and the corresponding Einstein 
field equations give rise to constraints involving gq 

2 a n d  atgij , but not involving atg~j. 
Each of these differences is elucidated in the 

Hamiltonian framework derived below in terms of 
the physical fluid variables. 

For reference, a table of contents for this section 
is provided: 

4.1. Equations of motion and notation 
- a l s o  units,  summation convention, interdependence 

among  the starting' equations. 

4.2. A DM ( n + 1)-decomposition of space-time 
- includes .L II decomposition of space- t ime tensors. 

4.3. Action principle and Legendre transformation to canonical 
variables 
- A D M  and KN action principles, 
- a d d i t i o n a l  notation and ADM-decomposed motion 

equations,  
- map from K N  configuration space to physical variables, 
- variational derivative defining canonical momen tum 

density, 
- Mi ~ PA c~iq A map for physical momen tum density. 

4.4. Canonical Hamiltonian formulation 
- Legendre transformation and canonical Hamiltonian 

formalism, 
- Definition of superHamiltonian and supermomentum 

density and their relation to the _L _L and .1. II compo- 
nents  of  Einstein's equations. 

4.5. Map from canonical to physical variables 
- Definition of the map and its form-invariance, com- 

pared to the previous sections, 
- Variational derivatives of the Hamiltonian with respect 

to physical variables. 

4.6. Hamiltonian formulation in terms of physical fluid bariables 
- Verification of the ADM-decomposed G R A F  equations 

using the Lie-Poisson bracket and Hamiltonian in the 
space of  physical variables, 

- Preservation of the _L .I. and _1. II components  of 
Einstein 's  equations for GRAF,  

- Remarks on: (a) form-invariance of the Lie-Poisson 
bracket; (b) conservation laws for GRAF; (c) treating 
the ADM lapse and shift as Lagrange multipliers. 

4.1. Equations of motion and notation 

In general relativity, the gravitational field and 
the motion of an adiabatic fluid under its own 
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gravity are determined self-consistently by the 
equations 

k 
G~,, = --2c 4 T~,., T ~''.,, = 0, u~r/f,~ = 0. 

(4.1) 

Here, the gravitational coupling constant is k = 
16~rG, G is Newton's gravitational constant, and 
G~,, is the Einstein tensor 

G,. := R~. - ½g,.R. (4.2) 

In (4.2). the notational conventions of MTW are 

used: R ffi g~'R~, is the scalar curvature; R~.. is 
the Ricci tensor, defined in terms of the curvature 

tensor R~x ~ for the metric g~ by R~.. - R~x,. wlth 

R~x,-'= rL ,  ~ - rA ,  , + r : :  L - r : , r  A ,  (4.3a) 

where F~ is the Christoffel symbol of the second 
kind, 

x . _ _  1 x h  F/,,, .-~g [ g x , . , + g x , , ~ - g ~ , x ] .  (4.3b) 

From the Bianchi identities, 

G~'~:, = 0, (4.4) 

and Einstein's field eq. (4.1a), there follows the 
fluid energy-momentum conservation law (4.1b) 

T~";, = 0, 

where the energy-momentum tensor T ~'~ of the 
fluid is [cf. eq. (3.3)] 

T~, = pfC2Wgtp.ld u "q- p f  gl~i, , 

w = 1 + ( e f + p f / o t ) c  -2, 

(4.5a) 

(4.5b) 

and the timelike velocity vector u ~ of the fluid 
satisfies 

g~,u~u" ffi - 1, (4.6) 

which is preserved by eqs. (4.1). Subscripts f in 

(4.1c) and (4.5a, b) denote fluid variables as mea- 
sured in the frame of an observer at rest with 
respect to the fluid. The other notation in (4.1), 
(4.5-6) is the same as that defined for special 
relativistic fluids, in the previous section. In par- 
ticular, Greek indices run from 0 to n, Latin 
indices run from 1 to n, and repeated indices are 
summed. As in the case of special relativity, eqs. 
(4.1b, c) together imply the mass equation, 

(pfu~) : ,  ffi 0, (4.7) 

by projecting (4.1b) along u ~ and using the adia- 
baticity condition (4.1c). 

4.2. A D M  (n + 1)-decomposition of space-time 

To investigate the Hamiltonian formalism for a 
relativistic fluid in terms of the physical fluid 
variables, we use the ADM notation, in which 
space-time is foliated into spacelike hypersurfaces 
depending on time parametrically. At each point 
of an arbitrary spacelike hypersurface x * = X~(x i) 
there is an (n + 1)-dimensional basis consisting of 
the n spacelike tangent vectors X~ .'-- X ~,~ and the 
unit timelike normal vector, n *, such that 

g~/3X~n/~= O and g~/jn*n/J= - l .  (4.8) 

Continuous deformation of the hypersurface 
through space-time produces a one-parameter 
family of hypersurfaces X~(x ~, t). The deforma- 
tion vector N ~ := OX~(xi, t ) /O(ct)  connecting 
points with the same label x ~ on two neighboring 
hypersurfaces can be uniquely decomposed with 
respect to the basis vectors { n ~, X 7 } as 

N "~ = Nn" + NiX7. (4.9) 

The components N and N i are called the lapse 
and shift functions, respectively. 

Any vector in space-time can be decomposed 
into components perpendicular and parallel to the 
hypersurface. For example, the velocity u *=  
(u °, u k) in space-time decomposes into u± and 
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ul~ defined by 

k ,, (4.10) U a = u ± n  a +  UllX ~, 

where, using the normalization (4.8), 

u ± = n , , u  '~ = :  - u ± .  (4.11) 

Solving (4.9) for n ~ gives 

The ADM formalism splits the metric g.a into 
N, N i, and g~j, as follows: 

N a N  ~ -  N 2 N j  I ,  (4.14a) 
g~a = Ni gij ] 

( - N - 2  N - 2 N J  1 (4.14b) 
g~" = N _ Z N  i g i J _  N - Z N i N Y  ]' 

n~ao=N-~(act-N,O,). (4.9') 

Consequently, by substituting (4.9') into (4.10), 

u ~ =  u "  n"o~ + u~lO k (4.10'a) 

-u±N lm)O  
(4.10'b) 

= u ° O ,  + ukOk, (4.10'C) 

where we identify space-time vectors with dif- 
ferential operators via v ~' ~ v~O~,. Now u ± and ut~ 
can be expressed in terms of the lapse, shift, and 
space-time vector components u ~ by identifying 
coefficients of Oct and 0 k in (4.10'b,c): 

u ± = u°N,  (4.12a) 

ul~ = u* + u ° N  k. (4.12b) 

In either the special relativistic, or the asymptoti- 
cally fiat limit, we have N-= 1, N*---0, and the 
vector (u ±, u~) reduces again to the space-time 
vector (u °, uk). 

A similar decomposition exists for tensors. For 
the space-time metric tensor g,# we .already have 
in (4.8) the projections, g . ~ = 0  and gx ±= -1 .  
In addition, the tangential projection of g,# along 
the hypersurface is 

gij(  x ,  t )  = gal~( X (  x ,  t ) ) X T X  fl, (4.13) 

which is the n-dimensional Riemannian metric 
induced on the hypersurface by its embedding in 
space-time. As indicated in (4.13), the induced 
metric gij changes with time as the hypersurface is 
deformed. Thus, in this formalism gig is a dynami- 
cal variable. 

where the induced metric g~j on the spacelike 
hypersurface raises and lowers Latin indices by 

g~jgJ* = 8~*, N i = g i jN  j, N j = g j kN  k. (4.15) 

Note that from (4.14a) 

g , , u  v = N , u  ° + u k = gktU~ =: U~ [by 4.12b]. 

(4.16a) 

The ADM decomposition then allows the proof of 
useful relations among space-time components of 
(n + 1)-decomposed components of tensors and 
vectors. One such relation is 

<~+l)g := ~/_ det (ga~) _ N d ~ t ( g i j  ) =: Nvr~. 

(4.16b) 

So, the volume element has the form 

• / - - i - _  t,+l)g dxO d x l .  . . d x  n = cN~[~ dt  d x l  . . . d x  ~. 

(4.16c) 

The rate of change of gij with respect to the 
time label, t, can also be decomposed into normal 
and tangential components (see, e.g., MTW, 
p. 513) 

Otgij = - - 2 N K i j  + N,.I2 + NjV, (4.17) 

where the vertical stroke I denotes spatial co- 
variant derivative with respect to the induced met- 
ric glj, and Kij  = -n~;g= - N ~  ° is the extrinsic 
curvature of the hypersurface. Eq. (4.17) may be 
rewritten as 

O tg i j  = -- 2 N K i j  + ..o~Ngij, (4.18) 
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with the perpendicular and parallel components of 
the Einstein tensor given, e.g., in MTW 
(21.162a-c), p. 552. The symbols 9f a and a¢, 
defined in (4.21a-c) will reappear momentarily in 
the Hamiltonian density for the general relativistic 
adiabatic fluid. For now, we note that MTW 
(21.162a-c), p. 552, becomes upon including the 
various factors of c and using normalization (4.8): 

with .Wng q being the Lie derivative of gij with 
respect to N . ' =  N~O~. Then, using (4.9') the extrin- 
sic curvature tensor is given by (cf. MTW, p. 518) 

K,j  = - {.W, gij, (4.19) 

where n ,= n~O~. Finally, we can decompose the 
energy-momentum tensor as 

T ±  ± = p f c 2 w (  u ±)2 --Pr 

= - - T  ±± [since g± ±= -- l] ,  (4.20a) 

T "111, = pfc2wu ± u 2 =." c M J ~ f g ,  (4.20b) 

" "~2W"IIull + (4.20c) TItll = el'. "i j gijPf' 

SO that the Einstein equation (4.1a) decomposes 
into 

G ± =-½(mR+ IJ--[K,jKiJ-(K/) 2] (4.22a) 
± 2 C  2 ' 

G ±~ = ~[Ki '7~ - Kmml,], (4.22b) 

Gill __ (n)G: __ { C - 1 N - 1 (  ac t __ Nkt~k ) (  K j  -- 8 :K m ) 
]lJ 

--2 m i 1 ~ - 2 f ~ i /  t,'m'~ 2 1 k - c  K m K j + ~ c  oyeZ, m) 
1 ~..__ ± - - - -  ±±  O, (4.21a) 

2V/~ G ± 2 c 4 T -- 
1 -2,~ir,- e t , ~  (4.22c) 

+ ~C vJ*~'lra*~ ] '  

1 c2J ,  := G ± H _ I ~ T ± ~ I = O ,  (4.21b) 
2V/- ~ 2 where (")R is the scalar curvature and (")Gj is 

the Einstein tensor formed from the induced 
• k--~-Till O, (4.21c) G I ~ -  2c 4 I l J  = metric gij. 

4.3. Action principle and Legendre transformation to canonical variables 

Arnowitt, Deser, and Misner [1] showed that the Hilbert action, 

s.tso#] = f dx ° d"x ( 2 c k ) - ' ~  R, 

could be written (modulo divergences: we are ignoring boundary terms) in terms of the field variables gq, 
N, N j, and the extrinsic curvature Kij as 

s~i,M [ g,j, N, NJ l = f dt f d"x{(2k)-'Nv~ [ c-~K,jK"-c-S(K/)2+ '")R] }, (4.23) 

where (")R is the scalar curvature formed from the induced metric gij. From the action (4.23), ADM 
obtained the canonical equations for the field equations (3.1a) with T~ = 0, i.e., in the absence of matter. 

Recently, Kiinzle and Nester [8] (abbreviated as KN) used the ADM formalism to obtain a canonical 
Hamiltonian form of both the field equations (4.1a) and the fluid dynamics of a barotropic [Pt =P(#f)], 
general relativistic fluid (4.1b) from the sum of the ADM field action (4.23) and a fluid action reminiscent 
of (3.11). For an adiabatic general relativistic fluid, the KN action becomes 

LKN = L~M- f dt f d"x NV~(p,, ~,), (4.24) 
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with pf and ~lf defined in the space of Lag, ran#an variables, qa(x, t), as in the previous sections. 
We adopt the action (4.24) as the starting point for deriving by means of the Poisson structure algorithm 

of sections 2 and 3 the noncanonical Poisson structure of a gravitating fluid found empirically in BMW 
[12]. To do this, we first rewrite (4.1b, c) and (4.7) in the ADM decomposition as 

= - 

V i 

Pf,i -- C2wu ± N,~ + 

(4.25a) 
(4.25b) 

(4.25c) 

where, as before, the vertical stroke I represents covariant derivative in the spacelike hypersurface with 
lapse N and shift N k, and the following additional notation is introduced: 

vk,=cuk/uO [by(4.12)] =cN( u~l Nk ) 
u ± N ' 

S i : =  CWtl~ I, 

t3 := p,u°Nyr-g [by (4.12a)1 = p,u ± 7rg -, 

(4.26a) 

(4.26b) 

(4.26c) 

(4.26d) 

The fluid equations of motion (4.25a-c) are obtained from the starting equations (4.1b, c) and their implied 
eq. (4.7), as follows. From the mass equation (4.7) we have 

0 = ( ~ ) ( c ~  p,u~);~ = c ( p f u ° ~ ) , a +  c ( p f u ' ~ ) , ,  

[by (4.16b)l = (pfu°Nv/g),, +(pfu°Nfgcui /u°) ,  i 

[by (4.26c)] = P,t + (pcu'/u°),,  

[by (4.26a)] = P.t + (poi).i • 

This proves (4.25a). Next, from the entropy eq. (4.1c), there follows 

u°[ cu k ] 
O = u t ~  "Iz=uO~ ' ct'~ uk~ " k=--C ~'t"~ - - ' ~ , k  ] 

[by (4.26a)] u° =-Z[,,,+ vk, 
This proves (4.25b). Finally, the motion equation (4.25c) is derived in appendix A, by taking the tangential 
ith component of the covariant fluid equation (4.1b) in the ADM decomposition. 

When N = 1 and N k = 0, the motion equation (4.25c) reduces to the special relativistic fluid motion 
equation (3.9c). The other equations (4.25a, b), are just the same, respectively, as eqs. (3.9a, b) in the case of 
special relativity. Thus, the variables ib, ~, and v; can be defined in terms of Lagrangian coordinates 
qA(x, t), A = 1, 2 . . . . .  n, in the same way as before, in (3.10a-d). Namely, 

~) (x , t )=~(q)de t (q~) ,  , ( x , t ) = ~ ( q ) ,  CA+qflvJ=0, v J = - ( q - 1 ) J ¢  a, (3.10a, b,c,d) 
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where, as before, q~ = OqA/Ox ~, :t A= OqA/Ot, (q-1)~ is the matrix inverse of qfl, and ~ and ~ are 
prescribed functions of the entire set of Lagrange coordinates q :-- { qA }. 

The spatial fluid velocity v j is defined in terms of Lagrangian coordinates by eq. (3.10d). The fluid 
velocity appropriate for the action principle (4.24) is not v j in (3.10d), though. Rather, the appropriate 
velocity is t k, the velocity tangential to the spacelike hypersurface. This velocity is defined by 

tk ul~ [by (4.12a, b)] uk N *  . . . . .  + - -  (4.27) 
c u ± u ± N " 

Now, according to (4.26a), the velocities v* and t k are related, since 

- -  = N (4.28a) 
c u ± N ' 

[ b y ( 4 . 2 7 ) ] = N ( t ;  N k ) .  (4.28b) 

Then, as a consequence of (3.10d) and (4.28b), the tangential velocity t k is related to the Lagrangian 
velocity t~ A by 

tk = _ N -  I( qA _ cNJq~ )( q-  X)Ak ' (4.29a) 

so that 

Otk ---- --N-X(q-X)].  (4.29b) 
0q A 

The velocity t k alSO appears in u ±, since 

u ± = ( 1  - Itl2/c~) -1:, (4.30) 

where I tl 2 := g~jt~t y. Relation (4.30) can be seen by using the ADM representation (4.14a) of the metric g~a 
in the normalization condition (4.6): 

- l=g,~,suau O= - ( u ± )  2 + ]Ulll 2= - (u±)211 - ]Ulll2/(u±) 2] = - ( u + ) 2 ( 1  - Itl2/c2), (4.31) 

where lulll 2 .'= giyu~u~. Eq. (4.30) then follows from (4.31) by solving for u ±. The derivative of (4.30) with 
respect to t k gives 

O(u ±)-1 U ±t k ul, I 
- - -  ( 4  32) 

Ot k C 2 C 

w h e r e  t k = gkjt j. The derivative relation (4.32) will be useful momentarily in taking the variational 
derivative with respect to qa of the KN action (4.24), in order to obtain the canonical momentum. 

The canonical momentum variables are obtained from the action (4.24), as follows. Varying action (4.24) 
with respect to gij : =  cgtgij defines the canonical field momentum density rr ~j [KN, eq. (3.18)] as 

k -  1c 2T1" 'J := 8L KN = k -  lc 2 ~  ( gijgr r _ g ij ). (4.33 ) 
8~u 
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Varying LKN in (4.24) with respect to OA gives the canonical fluid momentum density 

PA := 8LKN6 q---'-" T = --NgCg 0/0f(~e 0(U "1") -10or 0(/,/2-) -x0t k . . . .  Oq AOtk - N f g ( c 2 w ) ( - ~ g ) (  ullk)( - N - l ( q - 1 ) k A ) c  

[ b y ( 4 . Z 6 b ) ]  ^ - 1  - =--PSk(q )~='--Otk(q )A" (4.34) 

In the first line of the computation (4.34) we have used (3.13), (4.26c), (4.29b), and (4.32). In the second line 
we have used (4.27) and introduced the quantity 0, 

• "= ibu J- w, (4.35) 

where according to (4.26c) t3 " =  pfu°NvIg  = p f U  .1. ~[~. 
The physical fluid momentum density M k is defined to be 

M k [by (4.20b)] .'= c-lNvlgT ° [by (4.16)] = CW[~ulIk [by (4.26b) and (4.34)] 

= [~Sk [by (4.34)] = Ot k [by (4.34)] = -PAq A. (4.36) 

Remark. The variable M k in (4.36) is related to the momentum density variable /t in BMW [32] by 
m k  = ½t, k. 

4.4. Canonical Hamiltonian formulation 

Relations (2.10a, b) and (4.36) will soon enable us to map from the canonical Poisson structure for the 
variables (PA, qa) to a noncanonical Poisson structure for the fluid variables { tb, ~, Mk}. (As before, all 
these variables are functions of Eulerian coordinates.) Before making this transition in the Poisson 
structure, though, we present a slightly modified version of the canonical Hamiltonian formalism for 
gravitating fluids discussed by KN, in order to obtain the gravitational "super-Hamiltonian". Rewriting the 
last relation in (4.34) and using (4.32), we obtain 

- - I  k pA=--Otk(q )A=N-lO(itO--cNIqfl)(q-1)'~g,.k(g-')~=N-lO(A-x)A,(glB--cNtqfl) ,  (4.37) 

where (A-X)AB is defined in (2.9). Hence, 

= - cU'q;') (4.38) 

and we find the following relations: 

o [ p [  2 ..= N AB -~ PA A PB [by (4.38)] = PA( O A - cNtqt) [by (4.32')] 

= --NtkpAq~ [by (4.36)] = NtkMk = N~ltl  2 = ~IMI  2. (4.39) 
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Thus, the momentum density magnitudes are equal, IPI 2__ IMI 2. Using (4.38), (4.39), and (4.36), gives 

PA# A = ~-Ie l  2 + cNtPAql 4 [by (4.39)] 

= o l n l  2 - cNtMt. 

23 

(4.40a) 

(4.40b) 

Thus, the fluid Hamiltonian obtained by Legendre transforming Lm, ~ in (4.24) will be easily expressible in 
terms of either Lagrangian variables (PA, qA), or Eulerian variables { b, ~1, Mk }. In either case, the lapse and 
shift functions will appear explicitly and only linearly. Note that the time derivatives of N and N i are 
absent from both the field (ADM) piece of the action and the fluid piece (for further discussion of this 
phenomenon, see Gimmsy [58]). 

The lapse and shift functions that define the ADM decomposition are merely prescribed functions, not 
dynamical variables. 

The KN action (4.24) is expressible as a phase space functional, parametrized by N, N a, 

LKN[~r"b, gob, PA,qA;N,N"]=(k-lc2) f dt f d"x[~rabgab+kC-2PA?lA--c2N~'--N~a ] , (4.41) 

where ~r u is defined in (4.33), PA is defined in (4.37), and . ~  is the so-called super-Hamiltonian density 

"~"= °~sr + "~Pn, (4.42) 

with gravitational part 

1 (~r;)2) (4.43) "~g'~"= -v/ 'g(")R +c-2(vt-g)-X( ~rab~rab (n 1) 

and fluid part 

• "~n := ~t"n (qA, q : ,  gab, cA):= kc'4(~/ge(Pf, ~f) -q- IP12/9) (4.44a) 

[by (4.39)] = kc-'(C~e(pf, nf) + InlZ/0) .  (4.44b) 

The supermomentum density J a  in (4.41) is defined as 

a¢- a : = j g r  +0¢-~ ..= _ 2~r~l, + (kc-2)  cPAq ~ (4.45a) 

[by (3.36)] = - 2~rrl, - kc-lM~. (4.45b) 

The Hamiltonian for the combined system of fluid and field is now written as 

[ + N°(la  
n =.. H~r + n n ,  (4.46) 

using definitions (4.43)-(4.45). Note, when the metric gu in (4.46) is time independent, and N - 1, N a - 0, 
then H returns to the special relativistic form (3.23). 
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The physical meaning of the field quantities "~e,r in (4.43) and j ~ r  in (4.45) can be obtained readily by 
substituting the definition of ~r ~j (4.33) into (4.43) and (4.45), and comparing the results with (3.22a, b), 
whereupon we have 

~ =  2v/-gG ±±,  (4.47a) 

at~'~ gr ---- -- 2~r~l~,, = 2vl-gc2G "~. (4.47b) 

Thus, ag'~, and atto sr are proportional to the 3_ 3_ and 3_ II components of the Einstein tensor. This is, of 
course, well known, see, e.g., Isham [5]. 

The physical meaning of the fluid quantifies ~fl in (4.44b) and J a  n in (4.46b) can be elucidated in 
terms of the fluid stress tensor, T ~'', from eq. (4.5), 

T ~  = pfcEwu~u , + tn+l)g~,p~. (4.48) 

Namely, ~ 'n and J ~  are related to T ~ by 

c " k - la~'fl = 1/rg T ± ± - ~  c 2 ~ - 1/rg p f , (4.49a) 

Ja  n = - ¢ ~ N (  kc -2) T ° = - ¢~  ( k c - 2 ) T  ±". (4.49b) 

These relations can be shown directly. By (4.47b) and (4.36), we have (4.49b), 

t ?  = - k c -  lMa = - k c -  = N ¢ ~  r ° = - k c -  2 v ~  r ±~. 

For (4.49a), we write 

~fg T ± ± := N2~fg r O0 [by (4.48)] = N2vrg ( pfc2wu°u° + (n+1)g°°pf ) 

[by (4.14b)] = N 2 i ~ ( p ,  c2w(u°) 2 -  N-2pf) 

[by (4.12a)] = ¢ ~ ( p f c 2 w ( u ± ) ~ - p r )  [by (4.26b) and (4.35)] =c2/~ - ~/-gpf 

= v / g [ p e c 2 w ( ( u ~ ) 2 -  a) + p, c 2 w - p t ]  

[by (3.13) and (4.29)] = v/g[ ptc2wlulll 2 + e(pf, 7b) ] 

[by (4.36) and (4.26b)] = In l z  + ~/ge(pr, n,) 
u ±w~ 

[by (4.35)] = I n l ~ / O +  v~e(pe ,  71e) [by (4.44b)] = c4k-1~" n. 

In this computation, equating the first expression with the last one and with the last expression on the third 
line proves relations (4.49a). 

Upon combining (4.47) and (4.49), we regain (4.21a, b), namely 
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So the Hamiltonian (4.46) may be rewritten as 

H = 2 k - ' c 4 f  d"x[~/r-gN( G~" . - k 4 .L)+CrgN"( G±''-,~ 2C 4kT'~)] . (4.46') 

Thus, the Hamiltonian H in (4.46') contains the .1_ .1_ and ± II components of Einstein's equations, in a 
linear combination with (in general) time-dependent coefficients. 

4.5. Map from canonical to physical fluid variables 

As in the case of special relativistic adiabatic fluids, the Hamiltonian (4.46) depends implicitly via 
relations (4.49a, b) on the field and fluid variables through the quantity 0 defined in (4.35). This implicit 
dependence will cause no difficulty, however, in passing from the canonically conjugate set of variables 
{ gu, ¢ru' PA, qA } to the physical variables { gij, ~r u, Ib, *1, M, }. Before this transition, though, we first replace 
PA by (--PA) in the Hamiltonian (4.47) and in eq. (4.36). This replacement is immaterial in the 
Hamiltonian, but it conveniently changes the last sign in (4.36), thus [along with (3.10a, b)] reproducing the 
map (2.15) from the previous sections, but now in terms of general relativistic variables. Namely, 

Mi=PAOiq A, ib=~(q)de t (q~) ,  , / = ~ ( q ) ,  (4.50) 

where M i, ~b, and 7/are given, respectively, by eqs. (4.36), (4.26a), and (4.26b). We know that this map is 
canonical, since it yields the Lie-Poisson bracket (2.18) in terms of {jb, 7, Mi} which is associated to the 
semidirect-product Lie algebra discussed at the end of section 2. The Hamiltonian functional (4.46) can be 
expressed in terms of the functions N and N', and the set {gu, ~ru, b, rt, Mi} only, through eqs. (4.43), 
(4.44b), (4.45b). In particular, the fluid piece of the Hamiltonian (4.47) is 

Hn = ( k- ~c2 ) f d*x [ Nc:~n + Na: :  ] 

[by(4.44b) and(4 .46b) ]=(k - l c2 )  f d n x [ N k c - 2 ( , / ~ e ( p , , ~ ) +  [M[2/O)-kc - 'N"M, , ]  (4.51) 

[by (4.49a)] : f dnx [N(cZ0 - ~ /gpf ) -  cNaMa], 

which is the general relativistic analog of (3.25). 
The variational derivatives of the fluid Hamiltonian (4.51) needed for the equations of motion are 

8H n 8H n _ Nc2w 8H n 8H n 8H n • ! iy 

8M, = v', 8~ u ' 8~1 = N~/'-g pfT,, = O, = - 2  v/g-NTIIII • 
.L 8~riJ 8gij (4.52a-e) 

To prove variational identities (4.52a-e), one first needs that 

,Su "w =, ~ = ¢'IMI ~/c: + (bw) ~ , (4.53) 

which follows by substituting u _L from (4.35) into (4.31), and using (4.39). We also need (3.27), rewritten as 

c E d w = p i  - -~pfdp,+ p71 ~f+Tf  d~f, d p f = p f c E d w - p f r t d ~ f .  (4.54) 



26 D.D. Holm / Hamiltonian formalism for general-relativistic adiabatic fluids 

By using (4.53), (4.54), and (4.26b, c), we obtain from (4.51) 

8Hn N( C2 00 Opt I c2( Ow Opt) apt Opt 
8M, = ~ ~ i  - f-~ aM, ] - cN' = N-ff  Mi lc  2 + ~2w --Op, aM i - Nvl--~ Opf OM, 

M'  Opt c2~ Ow vl ~ Opt ] = N ' ~ - c N i + N " ~ i  u ± Opf 

cN i 

(4.55) 

which proves (4.52a). Next, by (4.53) and (4.54) 

Opt Nc2( ^aw)  ap~ ~Htl NC2^ O~(PW) ~ _~i W+p.iff~p _Vfg 
8~ = ~ pw ab ab u ± 0[~ 

_ Nc2w + C-g ( cxpt OW OPf ) OPf = Nc2w 
u x Opt Opt t~[~ U 1 ' 

(4.56) 

which is (4.52b). Now, by (4.53) and (4.54)again, 

8Ht I Sc2 ~ O[~w Opt Nc 2 cgw , -Op t  
a'O = 0 p w - ~ - -  Nvf ~ 0~ = u ± ~ i ~ _  N~/g 071 

( aw 
-- Nv/g" P'c2-0"-~'~ 0~/ ] = NCgpgT,, (4.57) 

which is (4.52c). The variational derivative (4.52d) is dear, since H a does not contain ~r u. Finally, (4.52e) is 
obtained as follows: 

8Hn = Nc 2 O0 No, O_~ _ NVl~ Opt 
8g u ~ -  ~-t Og u Og u 

2 ag u ' 

where we have used the definition of 0 (4.35), the thermodynamic relation (4.54b), and the identity 

½vqg". 
tggij 

Using the definitions of 0 and A5 in the relation (4.59) now gives 

, - I M ' M J  , .1 ~ _  _ 1  / j  3Hrtsg u 2 N ~ l g [ - - ~  + pfg ' ]  [by (3.20b,c)] = 2NI~-T, II,. 

(4.58) 

This proves (4.52e). 
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4.6. Hamiltonian formulation in terms of physical 
fluid variables 

Substituting the variational derivatives (4.52a-c) 
into the Lie-Poisson bracket (2.18) and noting 
that Hsr depends only on the canonical fields 
(gq '  ~.u) readily yields 

a,~,= { n,~,  } = - (~,v,) , , ,  

a t r l  = (H,*/} = -~l,i vi, 

(4.59a) 

(4.59b) 

which recover eqs. (4.25a) and (4.25b), respec- 
tively, in the Hamiltonian formalism, where H = 
Her + H n is the sum of the gravitational and fluid 
Hamiltonians. 

Substituting variational derivatives (4.52a-c) 
into the Lie-Poisson bracket (2.18) also gives 

OtMi = { H, M~ } 

= - ( M j O  i + ajMi)v j -  150i( NC2Wu -L ]1 

N~T, 
+ ± ~,i. u 

(4.60) 

In (4.60), substituting M~=bs i [according to 
(4.26b)] and using (4.59a) yields 

O,s ,  = - v J s , , j -  sjv/, 

_(.c'w I 
u" ],i u± n,i, (4.61) 

which has the geometric interpretation, 

a,(s ,d, , ' )  = -.Z.,(s, dx')  

_d( NC2W l + Nr, 
u± ] u~ d~l. (4.62) 

Here d denotes the exterior derivative tangential to 
the spacelike hypersurface and £"~ is the Lie 
derivative with respect to the spatial components 
of the space-time velocity vector, cu~'/u °. Like- 
wise, eqs. (4.58a, b) have similar geometrical inter- 

pretations, namely, 

0, ( 15 d"x ) = -Aa~( b d"x), (4.63a) 

8,*/= ,.~a~. (4.63b) 

In Remark B, at the end of this section, we will 
show how eqs. (4.62-3) lead to additional con- 
servation laws for gravitating fluids. 

To show that eq. (4.61) implies the motion eq. 
(4.25c), we note that by (2.3) we have 

1 
- (c2w),,  + Tr~,i = - ~Pt , i ,  (4.64) 

and by (4.30) we have 

, i  

so that (4.61) becomes 

N c2w 
~tSi= --vJsi,j Pf,i-- ± N i 

u ± p f  U ' 

M 
--sjvJi + NsjtJ.i + 2 s J t % k , i ,  (4.66) 

where we have used (4.36d) in the form s k = u ± wt k. 
Now the fourth and fifth terms in (4.66) can be 
written as 

s j ( N t J i -  vJ, i) [by (4.28b)] 

= sj(cNJ, i -  tJNi  ) [by (4.36d)] 

= csjNY.i- u±wl t l2N ,  [by (4.31)] 

.k 2 - we2  - = c s / W , - u  wc 2v ,+-d-i-lv,. 

Consequently, the third term in (4.66) cancels, 
leaving 

N 
Otsi= -vJsi,y u± Pt'Pt,i + csjNJ, i 

-- U .1. w c 2 S , i  + N s J t k g  # ,  i" (4.67) 
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A short calculation similar to (2.28-30) gives 

--VJSi,j  + ~ s J t k g j k , i  = -NtJs~l j + cNJsi , j ,  

so that (4.67) becomes 

N 
OtSi = -- NtJSilj u ± pfPf '  i 

- c : w u  1 N i + ( cUJs  ) , ,  + cUJ( s,, - 

(4.68) 

Because the torsion is zero, we have s~,j - sj, ~ = Si l  j 

- sjl ~, so that (4.68) is equivalent to 

N 
O t S i  = - -  ( N t J -  cNJ)sitJ u ±Or pt'i 

- c ' w u ±  N,i + ( c s jNJ) , i -  cNJsjli 

N 
= - -  vJsitj .I. Pf, i -- C2WU ± N , i  + csjN¢,  

p fu  
(4.69) 

which reproduces the motion eq. (4.25c), upon 
substituting N( ofu ) -  x = N~/g / k, by (4.26c). 

Thus, the Lie-Poisson bracket (2.18) and Ham- 
iltonian (4.51) yield the general relativistic adia- 
batic fluid eqs. (4.25a-c) directly in terms of the 
Eulerian physical variables ( jb, ~1, Mi }- Because the 
map (4.50) preserves Poisson brackets, the equa- 
tions in the canonically conjugate variables 
(Pa, qA) also imply equations (4.25a-c). The fluid 
equations of motion in terms of canonically con- 
jugate variables (PA, qA) are discussed in KN. 

Finally, substituting variational derivatives 
(4.52d, e) and using the canonical Poisson bracket 
in the field variables (gij, Ir~J) with the total Ham- 
iltonian (4.46) leads to the ADM evolution equa- 
tions, including matter (see, e.g., MTW (21.114-5), 
p. 525 and KN (2.31-4), p. 1012) 

N (2~rij _ ~riiTgij ) + Nilj + (4.70) 

c-  20t~riJ= - v f g  [ N(  R i J -  ½g'JR ) - Nlij + NtTg ij] 

1 . _:[ ij: m " " + - ~ - J c  [~r ~r m - 2~rL~r "j  

-~-lgiJ(~TlmqTim--l(~:)2)] 

-c-:[Nlim~r my + N(m~r'ni-(~riYNm)lm ] 

+ ½kc-4~t~NTl~li. (4.71) 

Eq. (4.71) is the II, II part of Einstein's equations 

ijm 2~  "" GIIll- TI~ I. (4.72) 

It remains to prove that the & ± and ±ll 
components of Einstein's equations are preserved 
by the dynamics of the II, II eqs. (4.72) and can, 
thus, be considered as nondynamical; that is, as 
initial-value constraints. An initial-value con- 
straint for a given system is a relation or condition 
which, if imposed at a certain initial time, will be 
preserved under the dynamics of the system. Ini- 
tial-value constraints are common in fluid dy- 
namics. For example, in magnetohydrodynamics, 
the condition that the magnetic field be diver- 
genceless is preserved by the equations of motion, 
if it holds initially. Likewise, the ± .1_ and ± II 
components of Einstein's equations are preserved 
under the II, II dynamics and, thus, are initial-value 
constraints, by virtue of the Bianchi identities. 
This is shown explicitly in appendix B. 

Consequently, we can summarize the results of 
this section, as follows: The Hamiltonian structure 
for GRAF in the space of dynamical variables 
{ O, ~, Mi, gij, ~r ij }, i, j = 1, 2 . . . . .  n, consists of the 
Hamiltonian functional (4.46) and a Poisson brac- 
ket which is the direct sum of the Lie-Poisson 
bracket (2.18) for the fluid variables { ~, T1, Mi } 
[defined in (4.26c, d) and (4.36)] and a canonical 
Poisson bracket for the field variables (g~j, ~riJ). 

Remarks. A) The present derivation via the map 
(4.50) of the Lie-Poisson bracket (2.18) for gen- 
eral relativistic fluids provides a constructive proof 
and confirmation of its earlier empirical discovery 
in BMW. The Lie-Poisson bracket for general 
relativistic fluids has the same form as for nonrela- 
tivistic 'fluids. From the present viewpoint, form- 
invariance of the Lie-Poisson bracket follows from 
form-invariance of the map from canonically con- 
jugate Lagrangian fields to noncanonical, but 
physical, fluid variables [compare (4.50) with 
(2.4a, b) and (2.7)], with both sets of variables 
expressed in Eulerian coordinates. 

B) Having shown the equivalence between the 
Hamiltonian eq. (4.60) and the motion eq. (4.25c), 
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we can use its Lie-derivative form (4.62) in combi- 
nation with (4.63a, b) to find immediately that, 
with s=s~dx ~, i = 1 , 2  . . . . .  n, in ( n + l )  dimen- 
sions, 

(o, +.zo)(as ^ d,7) = 0, (4.74) 

so that, by (4.63a), in (3 + 1) dimensions, 

(0, +Lay)S2 = 0, f~,= b-x curls" Vn, 

s/,= ~t,/~ = ( , ~ ) - X N ~  r,°. (4.75) 

Thus, we have found the general-relativistic fluid 
conservation law 0tC = 0, with 

C = f d 3 x ~ ¢ ( n ,  fl), (4.76) 

for an arbitrary function • of the indicated vari- 
ables. The conserved functional C in (4.76) is in 
the kernel of the Poisson bracket (2.18); that is, 

{ C, F } = 0, VF, (4.77) 

in the space  of  dynamica l  var iables  
(~3, 7, Mi, g~y, ~r~J} • Thus, the quantity C in (4.76) 
is a Casimir, conserved independently of the choice 
of Hamiltonian (4.51). The quantity 12 in (4.75) is 
the analog for GRAF of potential vorticity (Ertd's 
invariant) in geophysical fluid dynamics [cf. (2.38) 
and (3.44)]. The use of the Casimirs for semidirect 
product Lie-Poisson brackets in the study of 
Lyapunov stability of equilibrium states is dis- 
cussed in section 5. 

C) There is a well-known argument for treating 
the lapse and shift as Lagrange multipliers in the 
action (4.41). However, we avoid this argument 
and its associated complications ensuing because 
the Lagrangian density must then be regarded as 
being degenerate. For the Hamiltonian formalism, 
it is enough to show that the _1_ 2- and 2. ]l com- 
ponents of Einstein's equations are initial-value 
constraints; so that OtH = 0, even for time-depen- 
dent lapse, shift, and metric, provided the initial 
data is appropriately constrained. 

5. Comments on Casimirs and Lyapunov stability 

This paper has focused on the common features 
of the Hamiltonian structures of NRAF, SRAF, 
and GRAF. The main result of this unified treat- 
ment is that in all three theories the fluid variables 
share the same Lie-Poisson bracket, when ex- 
pressed in terms of the appropriate spaces of 
physical variables constructed here. As discussed 
in the introduction, one of our motivations for 
presenting this work as explicitly as possible is to 
facilitate "technology transfer", i.e., so that re- 
cently developed Hamiltonian techniques in both 
gravitation and fluid dynamics can cross-fertilize, 
particularly in the study of dynamic Lyapunov 
stability. 

Recently there has been considerable develop- 
ment in the theory of Lie-Poisson structures for 
nonrelativistic and special-relativistic theories of 
fluids and plasmas, including magnetohydrody- 
namics, electromagnetic plasmas, Yang-MiUs 
plasmas, and superfluids. For surveys of the non- 
relativistic results, see, e.g., Holm, Kupershmidt 
and Levermore [15], Marsden et al. [16], and 
Marsden, Ratiu and Weinstein [14, 17]. For de- 
scriptions of special relativistic Hamiltonian struc- 
tures, see Iwinski and Turski [19], and Holm and 
Kupershmidt [55, 57, 59, 60]. The Lie-Poisson 
brackets for these theories have been classified 
mathematically and their properties (e.g., nontriv- 
ial kernel) have been used to establish sufficient 
conditions for Lyapunov stability of equilibrium 
states for various fluid theories; see, e.g., Abarbanel 
et al. [49, 50], Arnold [51, 52], Hazeltine et al. [53], 
Holm and Kupershmidt [55, 57], Holm, Marsden 
and Ratiu [61], Holm, Marsden, Ratiu and Wein- 
stein [13, 54], and Similon, Kaufman and Holm 
[181. 

Finding the same Lie-Poisson structure among 
NRAF, SRAF~ and GRAF suggests that the 
Lyapunov stability method, which relies so heavily 
on the conservation laws in the kernel of the 
Lie-Poisson bracket, should be applicable in all 
three cases, including gravitation. Indeed, the full 
Poisson bracket for GRAF, including the canoni- 
cally conjugate gravitational fields, is formally 
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identical to the bracket for electrically charged 
fluids in the (E, A) representation, where E is the 
electric field, which is canonically conjugate to A, 
the magnetic vector potential. For such a charged 
fluid, Lyapunov stability conditions are known, in 
both the nonrelativistic case (Holm [62]) and the 
special relativistic case (Holm and Kupershmidt 
[55, 57]). The analogy bodes well for using the 
Hamiltonian approach to study Lyapunov stability 
for GR fluid theories, too. 

A first step in this direction is to notice that 
certain (nondegenerate) equilibrium GRAF flows 
can be associated to critical points of the sum of 
the Hamiltonian H in (4.46) and the Casimirs C 
in (4.76) with an appropriate choice of the func- 
tion ¢. Consider the following: 

Proposition. With H and C defined in (4.46) and 
(4.76), respectively, critical points of the sum H + C 
are equilibrium states of GRAF dynamics. 

To understand this proposition, we first digress 
to discuss Casimirs further. Recall that the Casi- 
mirs have vanishing Poisson bracket (i.e., they 
"Poisson-commute") with any functional of the 
dynamical variables in the set { gi j ,  ~riJ, ~, 71 ' Mi }. 
Thus, Casimirs are conservation laws, since they 
Poisson-commute with the Hamiltonian; but they 
are only kinematic, since their conservation is in- 
dependent of the choice of the Hamiltonian, H, 
which generates the dynamics in this space of 
variables, under the rule for the Hamiltonian for- 
malism, 

OfF = { H, F ). (5.1) 

Here, {, } is the direct sum of the Lie-Poisson 
bracket for the fluid variables and the symplectic 
(canonical) Poisson bracket for the gravitational 
variables, and F is any functional of the dynami- 
cal variables. The Casimirs form an infinite family 
of these kinematic conservation laws, since they 
contain arbitrary (integrable) functions in their 
definition (4.76). 

There are several explanations of how the 
Casimirs arise. From the viewpoint of the present 

work, they appear via Noether's theorem. The 
action (4.24) in the Lagrangian configuration space 
admits the following symmetry transformation: 
relabel the Lagrangian variables so as to preserve 
the values of the physical fluid variables. A stan- 
dard computation using Noether's theorem yields 
the conservation of C by virtue of the Lagrangian 
relabelling symmetry of the action (4.24). This 
symmetry transformation also plays a role in 
Lagrangian stability theory in astrophysics: 
Lagrangian variations that preserve the value of ~2 
in (4.75) are "nontrivi.'al perturbations" in the sense 
of Friedman and Schutz [47] and Friedman [63], in 
Lagrangian perturbation theory. 

Now, as for the proposition. By definition, a 
Casimir C satisfies 

{ C , F }  = 0 ,  YF. 

So C generates no dynamics. In particular, the 
sum H c := H + C generates the same dynamics as 
the Hamiltonian H does alone. The critical states 
of H c are equilibrium states of the dynamics, since 
the Poisson bracket ( H  c , F } =  { H +  C , F }  
vanishes when the first variation of H c vanishes, 
i.e., when 

0 = 8H c := D H  c ( gu' ¢rU, f~, 71, Mi) 

• ( S g , j ,  8 ,r 'J ,  

for arbitrary variations ( ~gij, ~¢tiJ, ~P, ~l ,  ~Mi). 
This observation proves the proposition above. 

Thus, the existence of Casimirs (4.76) with their 
freedom in the choice of the function associates 
classes of equilibrium states with the critical states 
of certain functionals, H c. The Lyapunov stability 
of these equilibria can then be studied by estab- 
lishing whether there exist sufficient conditions, 
imposable on an equilibrium state (i.e., the "stabil- 
ity conditions"), under which we may obtain one 
or both of the following two situations. First, 
suppose 82Hc is definite, i.e., the second variation 
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of H c evaluated at the equilibrium state is definite 
in sign, under certain conditions on the equi- 
librium state. This situation implies linearized 
Lyapunov stability in terms of the norm given by 
82Hc, which is conserved by the linearized dy- 

1 ~ 2 it./ is namics (since, for Lie-Poisson systems, ~ --c 
the Hamiltonian for the linearized dynamics, see 
Abarbanel et al. [50]). Second, suppose the con- 
served functional H c is convex, i.e., the variation 
of H c from its equilibrium value is bounded above 
and below by positive-definite quadratic forms; so 
that bounding norms exist for H c. This situation 
implies Lyapunov stability for finite amplitude 
perturbations, in terms of the bounding norms. 
For a general description of Lyapunov analysis by 
this method as applied to nonrelativistic ideal fluid 
and plasma equilibria, see Holm, Marsden, Ratiu 
and Weinstein [13]. 

Whether sufficient conditions establishable by 
this method exist for Lyapunov stability of equi- 
librium states of GRAF remains an open question 
at this point. However, in view of the results of 
Friedman and Schutz [47] and Friedman [63] in 
this matter (namely, that for rotating GRAF equi- 
libria sufficiently high wavenumber Lagrangian 
perturbations are always unstable) one should ex- 
pect at most a conditional result; say, one that 
bounds the range of wavenumbers for which 
Eulerian variations are stable, in terms of equi- 
librium-state quantities. The linearization of the 
map (3.10) provides the relations needed for trans- 
lating between the statements of Eulerian and 
Lagrangian infinitesimal perturbation theory for 
general relativistic fluids. 

Appendix A 

Derivation of the A D M  motion equation for GRAF 
from its covariant form 

The motion equation (4.25c) for a general rela- 
tivistic adiabatic fluid is 

~ tSi "-:- _ vJ$ilj Pt,, -- C2WU ± N,i + cskNIki, 

(A.1) 

where I denotes covariant differentiation in the 
hypersurface with lapse N and shift N k, and com- 
ponents are taken with respect to a coordinate 
basis in the hypersurface i.e., in so-called adapted 
coordinates. Eq. (A.1) is derived as follows from 
the adapted-coordinates decomposition of the 
equation 

D,Tf  := T/~, = O, (A.2) 

upon choosing # in the direction i tangential to 
the hypersurface. Here the space-time covariant 
eq. (A.2) is decomposed into quanttties that are 
covariant with respect to the N, N k spatial hyper- 
surface for a given slicing of space-time, following 
the description of adapted coordinates given in 
Isenberg and Nester [4]. 

In adapted coordinates which use the surface- 
compatible basis of vector fields {e±,  e a } along 
with its dual basis of one-form fields { 0 _L, 0 a }, the 
space-time metric becomes 

g = - 0  ± ® 0  ± +g,,bO" ® 0 b, (A.3) 
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where gQb is the induced metric in the hyper- 
surface. Similarly, the inverse metric can be writ- 
ten 

g-1 = - e ±  ®e± +gabe a ® e b. (A.4) 

(The symbol e± for a particular basis is called 
n~O~ in eq. (4.9') of the text. Space-time quanti- 
ties are written in bold-faced notation in the 
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appendices.) Applying these formulas for the con- 
traction of the space-time fluid velocity vector, for 
example, leads to (4.31), i.e., 

ric part of Kab is 

(A.9) 

- 1 = g ~ # u ~ u  ~ 

= --u-l-u ± +gijUilU~. (A.5) 

Covariant (n + 1) derivatives project into adapted 
coordinates by using the connection formulae (cf. 
Isenberg and Nester [4]) 

I-'1± 0 ± = - -ab  Oh, 

IqbO ± = Kbc Oc, 

[]±Oh= --abO ± + [ K ~ -  . r~-  Ob(.W,, e~)]O ~, 

(A.6) 

[] b 0" = K~,O ± - F~bO b. 

Here ab Ob i s  a spatial 1-form, the "acceleration" 
of 0, defined in space-time as a,~:=n,,;#n# and 
obeying aan" = 0 by virtue of n,,n ~' = - 1, so that 
a ± .'= - a  ± = 0 (i.e., a ,  = (0, at,). The extrinsic 
curvature K,, a .'= - n , ; #  is also purely spatial, hav- 
ing only tangential components, since n*K~l ~ = 0 
= Kaanl~, again by nan ~= - 1 .  The quantity in 
(A.6) . ~ e e c  = [e± ,eb] is the Lie derivative vector 
field, and "r~' = Q~L b is a spatial tensor field, where 
Q~v is the torsion 

Q~v ..= O"(o,,ev - I-1,, e# - [ ea, e~, ]). (A.7) 

Upon choosing a coordinate basis, the torsion-free 
conditions (A.8) give 

a b = N - 1 N ,  b (A.10a) 

and the Lie derivative in (A.6) becomes 

O~(.~, e b ) =  N-1N~.b, (A.10b) 

in terms of the ADM lapse and shift. The ADM 
metric decomposition variables correspond to those 
here via the coordinate expressions 

g =  - 0  ± 8 0  ± +g~bOa®O b 

= - N 2 c 2 d t  @ dt  + g~b(dX ~ + cNadt)  

® (dx  b + cNbdt ) ,  (A.11) 

g - 1  = _ e .  L ®e.L +gabea @ eb 

1 0 

~b 0 0 
+ g  --g~x~ ® - - .  (A.12)  

ax b 

The motion equation (A.1) is now to be written 
as the i th tangential component of the conserva- 
tion law (A.2) 

Vanishing of the torsion leads via the connection 
formulae (A.6) and their duals [obtained from 
covariant differentiation of 0a(e#)=8~] to the 
conditions 

0 = T~',, (A.13) 

expressed in terms of s i = ( ~ c ) - l v ~ T / ± .  Using 
(4.7) leads to 

0 = Q ~ b =  ab-- e b ( l ° g N ) ,  

0 = Q A  = Kba -- Kab, 

0 = QT -- (A.8)  

0 = Qamb = Ore( ~Teae b -- ~Tee a - -[  e a , eb] ) = :  Oamb • 

The conditions (A.8) eliminate ,~', Q~m b, and the 
antisymmetric part of Kab. By (4.19) the symmet- 

o = 7",'..,= 

= P fUu(C2WUi ) ;u+Pf , i '  (A.14) 

where u~ = ul I = s J c w ,  so that the motion equation 
(A.14) becomes 

0 = pfu'csi;,  + Pr,i" (A.15) 
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Using adapted-frame coordinates, we have substitution of (A.20) for the term NsJKji, 

S : ~  SiOi~ 
(A.16) 

[]us= . ' D .  (s,0')+ u, [k(si0') 

Expanding (A.16) using the connection formulae 
(A.6) and the relations (A.10a, b) gives 

k i .I. F1 S = s i [ - - u ' a '  + ulIKk]O 

+ [ U ' S k ( K i k - - N - ' N k ) + u ' e , ( s i )  

+ U~ISilk] O i, (A.17) 

where e , ( s i ) :=N- l ( igc t - -NkOk)sr  Note that 
u,,u ~' = - 1  implies E]uu = 0, so the 0 ± component 
of (A.17) yields the relation 

= u l l U  j (A.18) u ' a i  j i ,  

which will be useful in a moment. Taking the 0 i 
component of (A.17) we have 

I[]uS i : ~  uPl'q s i  

= u"  [e , (si) + s ' K j i -  N- ls jNJ i 

= u " N  -1 [si.ct - N k s i , k  + NsJKji - syNJ, i 

+ Ntksilk], (A.19) 

where the definition (4.27a) for t k (namely, t k / C  

= u~l/u" ) has been used. Relation (A.18) now 
becomes, by (A.10a) and recalling sj .'=. cwu~! from 
(4.36), 

c w u ' N i  [by (A.10a)] = c w u ' N a  i [by (A.18)] 

= Ncwu~K/ [by (4.36)] = NsjK/.  (A.20) 

The covariant derivative (A.19) becomes, after 

[] uSi = UPSi; p 

= u X N - l [ s  _ . -sjNJ,, l i,ct Nksi, k+CWu±Ni  

+Ntksilk] [by (4.27b)] 

[ = u " N  -1 Si,ct + TSilk + NkSilk -- NkSi,k 

--  skNk, i + CWU " N,i ] 

= u " N  -1 Si,ct  + T S i j k  --  SkNik  i + CWU " N , i  . 

(A.21) 

Substituting the last expression for u~si;p into 
(A.15), we obtain 

0 = p fuVcs i ;  ~ + Pc, i 

= pru " N  -x [si,, + vks i l k  - -  CSkNIki + cXwu "N,i  ] 

+ P f , i "  (A.22) 

Upon dividing (A.22) through by Pr u ±N-1, which 
by (4.26c) equals b/(Nv/g),  we arrive at an equa- 
tion equivalent to (A.13), but in the desired form 
(A.1). 

Appendix B 

Preservation of the initial-value constraints 

An initial-value constraint for a given system is 
a relation which, if true at a certain initial t'.mm, is 
preserved under the dynamics of the system. In 
this appendix, we verify that the .1_ _1. and 1 II 
components of Einstein's equations (4.1a) are ini- 
tial-value constraints for the II, II components, by 
virtue of the Bianchi identities for the entire sys- 
tem of Einstein's equations. Let us decompose 
Einstein's equations into perpendicular and paral- 
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lel components (of. (4.21a-c) 

C ±  : = G ±  _ k__T  ± = 1 
± ± 2c 4 i 27r~ , 

c ±I' '= G ±IJ- ~ r ± l  j = 1 2c 4 ~ a ¢ i ,  (B.lb) 

Cill ~ill ~ T 'll (B.lc) 
IIJ : =  ~ l l J  - -  2 C  4 IL/" 

The Bianchi identities are expressed here as 

2 C  4 

In particular, the projected Bianchi identities are 

_ i m ~  I .  ±;I (B.3a) 0=H~ C± = g i i H i C ± ±  +g t-JiL" m, 

0 = I'-I~,C~l' = ~ ± C ±) + I-I k~llj't"kll (B .3b)  

From these identities, we calculate the evolution- 
ary equations 

a , , c  • ± = N ~ C  ± ± ,~ + N C  ~ ± I ¢ :  + ( U C  ±~ ) ~ ,  

(B.4a) 

actC ±~! = N" 'C ±~!,m + NC *~!K~- (NC)II~) im. 

( B . 4 8 )  

Therefore, provided CI~I vanishes, i.e., provided 
the II, II components of Einstein's equations are 
satisfied, the values C ± ± = 0 = C "~! will be pre- 
served by virtue of the Bianchi identities (B.3a, b). 
Equivalently, the values ./g'= 0 =,/~ will be pre- 
served. The rest of this appendix is devoted to the 
proof of eqs. (B.4a, b). 

To prove relation (B.4a), we calculate in adapted 
coordinates (as in appendix A, following Isenberg 
and Nester [4]) the quantity in (B.3a), 

n,c±~=0. (B.5) 

Let { 0 ±, O ~ ) be the dual basis in appendix A and 

C ± := C±±O ± +c±~le i. (B.6) 

( B . l a )  ' 

Then, using the connection formulae (A.6) we 
have 

+ [ ( C ) - C 

+ C ± ~ ' ( K j - O i ( ~ e ,  iej))]OJ, (B.7a) 

H i C i = [ e i ( C Z z ) + C i } ' K / ] O  ± 

e ( g '  ±11~ - t "  i l l  P k ]  ~OJ + [ C ± ± K u +  i~.~ j !  ,~ k , j i ] v .  

(B.7b) 

Taking e~ = 0 i, the 0 ± component of (B.7a) and 
the 0 j component of (B.7b) yield the Bianchi 
identity 

0 = O~Cv i = OvC iv = g . l .  ioiCi i + g i m D i C i  ~ 

= - e  ± ( C ' I ) + C  ±lla'+ C ±±K, :  + ( C ' " , . ) " .  

(B.8) 

Rearranging (B.8) using e± = N - l ( S c , -  NiOi) and 
a i = N - 1 N i  gives 

O,., C± ± = NiC  ± ±,i + NC i i K i  +( NC I~) li" 

(B.9) 

This proves relation (B.4a). 
A similar calculation involving C l~j is needed to 

prove (B.4b). The necessary Bianchi identity is 
(B.3b). Let 

Cj := C Xl)e. + Cl~e,,.  (a.10) 

The basis {e±,em} satisfies Oa(eb)=8g and 
0 ±(e±)=  1, so the connection formulas (A.6) re- 
vert to those in Isenberg and Nester [4]. Namely, 

D i e ± = a b e b ,  

D b e  i = - g ~ e a ,  

O l e b = a b e i  + [ - - K ~ + r ~ + O a ( . ~  eb)]e~, 

(B.11) 

[] c eb = -- K b c e  ± + F~ce~. 
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Whence, for zero torsion conditions (A.8), we find 

[] ± C 11 = [ e ± ( C " ~ ) + C,~)'a k ] e ± 

+ [ e l  (CI~I) + C ±~!a m 

+ CI~I(- K if' + 0"( .~.  ek))] e,., 

(B.12a) 

+ [--C-L~!K~ + ek(Cll~) + C~./"t~ ] e m. 

(B.12b) 

Adding the e± component of (B.12a) to the 
summed e k components of (B.12b) using the rep- 
resentations e~  = N - l ( O c t -  Niai ) ,  e k = 0 k, and 

the zero-torsion condition a k = N - 1 N k  gives the 
Bianchi identity (B.3b) as 

(B.13) 

0-- a ,c~l= a i c ' ) ! +  a k c k",j 

= N - ' (  Oc , -  NiOi)C ±1]_ C "yK k 

+ ( ) + u -  'u 

Rearranging (B.13) gives 

<. ,c  = N ' c  N c  j " k  lk" 

(B.14) 

This proves relation (B.4b). 

References 

[1] R. Arnowitt, S. Deser and C.W. Misner, The dynamics of 
general relativity, in: Gravitation: an Introduction to Cur- 
rent Research, L. Witten, ed. (Wiley, New York, 1962) pp. 
227-265. 

[2] A.E. Fischer and J.E. Marsden, The initial value problem 
and the dynamical formulation of general relativity, in: 
General Relativity, S.W. Hawking and W. Israel, eds. 
(Cambridge Univ. Press, New York, 1979) pp. 138-211. 

[3] J.A. Isenberg, The construction of space-times from ini- 
tial data, Thesis, University of Maryland (1979). 

[4] J.A. Isenberg and J. Nester, Canonical gravity, in: General 
Relativity and Gravitation, vol. 1, A. Held, ed. (Plenum, 
New York, 1980) pp. 23-97. 

[5] C.J. Isham, An introduction to quantum gravity, in: 
Quantum Gravity, C.J. Isham, R. Penrose and D.W. 
Sciama, eds. (Clarendon, Oxford, 1975), pp. 1-77. 

[6] K. Kuchar, Canonical methods of quantization, in: Quan- 
tum Gravity 2, C.J. Isham, R. Penrose and D.W. Sciama, 
eds. (Clarendon, Oxford, 1981) pp. 329-376. 

[7] J.W. York Jr., Kinematics and dynamics of general relativ- 
ity, in: Sources of Gravitational Radiation, L.L. Smarr, ed. 
(Cambridge Univ. Press, New York, 1978) pp. 83-126. 

[8] H.P. Kanzle and J.M. Nester, Hamiltonian formulation of 
gravitating perfect fluids and the Newtonian limit, J. Math. 
Phys. 25 (1984) 1009-1018. 

[9] V. Moncrief, Hamiltonian formalism for relativistic per- 
fect fluids, Phys. Rev. D16 (1977) 1702-1705. 

[10] A.H. Taub, General relativistic variational principle for 
perfect fluids, Phys. Rev. 94 (1954) 1468-1470. 

[11] W.M. Tulczyjew, Relativistic hydrodynamics as a sym- 
plectic field theory, Geometrodynamics Proceedings 
(Tecnoprint, Bologna, 1983) pp. 91-99. 

[12] D. Bao, J.E. Marsden and R. Walton, The Hamiltonian 
structure of general relativistic perfect fluids, Comm. Math. 
Phys., to appear, 1985. 

[13] D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, 
Nonlinear stability of fluid and plasma equilibria, Phys. 
Rep. (1985), to appear. 

[14] J.E. Marsden, T. Ratiu and A. Weinstein, Semidirect 
products and reduction in mechanics, Trans. Am. Math. 
Soc. 281 (1984) 147-177. 

[15] D.D. Holm, B.A. Kupershmidt and C.D. Levermore, 
Canonical maps between Poisson brackets in Eulerian and 
Lagrangian descriptions of continuum mechanics, Phys. 
Lett. 98A (1983) 389-395. 

[16] J.E. Marsden, A. Weinstein, T. Ratiu, R. Schmid and R.G. 
Spencer, Hamiltonian systems with symmetry, coadjoint 
orbits, and plasma physics, Proc. IUTAM-ISIMM Syrup. 
"Modern developments in Analytical Mechanics," Atti 
della Acad. Scienze di Torino 117 (1983) 289-340. 

[17] J.E. Marsden, T. Ratiu, and A. Weinstein, Reduction and 
Hamiltonian structures on duals of semidirect product Lie 
algebras, Cont. Math. AMS 28 (1984). 

[18] P. Similon, A.N. Kaufman, and D.D. Holm, Ponderomo- 
tive Hamiltonian and Lyapunov stability for magnetically 
confined plasma in the presence of RF field, Phys. Lett. 
106A (1984) 29-33. 

[19] Z. Iwinski and K. Turski, Canonical theories of systems 
interacting electromagnetically, Lett. in Appl. Sci. and 
Eng. 4 (1976) 179-191. 

[20] I.E. Dzyaloshinski and G.E. Volovick, Poisson brackets in 
condensed matter physics, Ann. Phys. (New York) 125 
(1980) 67-97. 

[21] P.J. Morrison and J.M. Greene, Noncanonical Hamilto- 
nian density formulation of hydrodynamics and ideal mag- 
netohydrodynamics, Phys. Rev. Lett. 45 (1980) 790-794. 

[22] I. Bialynicki-Birula and Z. Iwinsky, Canonical formulation 
of relativistic hydrodynamics, Rep. Math. Phys. 4 (1973) 
139-151. 

[23] D.D. Holm and B.A. Kupershmidt, Poisson brackets and 
Clebsch representations for magnetohydrodynamics, mul- 



36 D.D. Holm / Hamiltonian formalism for general-relativistic adiabatic fluids 

tifluid plasmas, and elasticity, Physica 6D (1983) 347-363. 
[24] T. Futamase and B.F. Schutz, The Newtonian and post- 

Newtonian approximations are asymptotic to general rela- 
tivity, (1983) preprint. 

[25] A.H. Taub, Relativistic Rankine-Hugoniot equations, 
Phys. Rev. 74 (1948) 328-334. 

[26] A.H. Taub, On Hamilton's principle for perfect com- 
pressible fluids, Proc. Sympos. Appl. Math. 1 (1949) 
148-157 (AMS, New York). 

[27] A.H. Taub, Stability of general relativistic gaseous masses 
and variational principles, Comm. Math. Phys. 15 (1969) 
235. 

[28] J. Kijowski and W.M. Tulczyjew, A Symplectic Frame- 
work for Field Theories (Springer, New York, 1979). 

[29] J.R. Ray, A note on the Lagrangian density for fluid 
systems in general relativity, Acta. Phys. Polon. 30 (1965) 
481-484. 

[30] J.R. Ray, Lagrangian density for perfect fluids in general 
relativity, J. Math. Phys. 13 (1972) 1451-1453. 

[31] B.F. Schutz, Perfect fluids in general relativity-velocity 
potentials and a variational principle, Phys. Rev. D2 (1970) 
2762-2773. 

[32] B.F. Schutz, The Hamiltonian theory of a relativistic per- 
fect fluid, Phys. Rev. D4 (1971) 3559-3566. 

[33] B.F. Schutz and R. Sorkin, Variational aspects of relativis- 
tic field theories, with application to perfect fluids, Ann. of 
Phys. (New York) 107 (1977) 1-43. 

[34] R.L. Seliger and G.B. Whitham, Variational principles in 
continuum mechanics, Proc. Roy. Soc. 305 (1968) 1-25. 

[35] C.W. Misner, K. Thorne and J.A. Wheeler, Gravitation 
(Freeman, San Francisco, 1973). 

[36] G.W. Kentwell, General relativistic fluid dynamics as a 
noncanonical Hamiltonian system, (1984) preprint. 

[37] J.E. Marsden, R. Montgomery, P.J. Morrison and W.B. 
Thompson, Covariant Poisson brackets for classical fields 
(1984) preprint. 

[38] L. Landau, The theory of superfluidity of helium II, 
J. Phys. Moscow (1941) 71-90; Collected Works, (Plenum, 
New York, 1970) pp. 185-204. 

[39] V.I. Arnold, Sur la grometrie differentielle des groupes de 
Lie de dimension infinie et ses applications a l'hydrody- 
namique des fluids parfaits, Ann. Inst. Fourier (Grenoble) 
16 (1966) 319-361. 

[40] R.F. Dashen and D.H. Sharp, Currents as coordinates for 
hadrons, Phys. Rev. 165 (1968) 1857-1878. 

[41] G.A. Goldin and D.H. Sharp, Functional differential 
equations determining representations of local current al- 
gebras, in: Magic without Magic: J.A. Wheeler Festschrift, 
J.R. Klauder, ed. (Freeman, San Francisco, 1972), pp. 
171-185. 

[42] S. Lie, Theorie der Transformationsgruppen, (Zweiter Ab- 
schnitt, Unter mitwirkung von Prof. Dr. Friedricli Engel) 
(Teubner, Leipzig, 1890), Chaps. 19 and 20. 

[43] A. Weinstein, The local structure of Poisson manifolds, J. 
Diff. Geom. 18 (1984) 523-557. 

[44] Sudarshan and Mukunda ( Wiley,New York, 1974). 
[45] T. Ratiu, Euler-Poisson equations on Lie algebras and the 

N-dimension heavy rigid body, Proc. Nat. Acad. Sci. USA 
78 (1981) 1327-1328. 

[46] N.E. Kochin, I.A. Kibel' and N.V. Roze, Theoretical 
Hydromechanics (Wiley, New York, 1964) pp. 176-178. 

[47] J.L. Friedman and B.F. Schutz, Lagrangian perturbation 
theory of nonrelativistic fluids, Astrophys. J. 221 (1978) 
937-957. 

[48] D.D. Holm, Notes on Noether's theorem, 1984 preprint. 
[49] H.D.I. Abarbanel, D.D. Holm, J.E. Marsden and T. Ratiu, 

Richardson number criterion for the nonlinear stability of 
three dimensional stratified flow, Phys. Rev. Lett. 52 (1984) 
2352-2355. 

[50] H.D.I. Abarbanel, D.D. Holm, J.E. Marsden and T. Ratiu, 
Nonlinear stability analysis of stratified ideal fluid equi- 
libria. Phil. Trans. Roy. Soc. (Lond), to appear (1985). 

[51] V.I. Arnold, Conditions for nonlinear stability of sta- 
tionary plane curvilinear flows in an ideal fuid, Sov. Math. 
Dokl. 162 (1965) 773-777. 

[52] V.I. Arnold, On an a priori estimate in the theory of 
hydrodynamical stability, Am. Math. Soc. Transl. 79 (1969) 
267-269. 

[53] R.D. Hazeltine, D.D. Holm, J.E. Marsden and P.J. 
Morrison, Generalized Poisson brackets and nonlinear 
Lyapunov stability-apphcation to reduced MHD, ICCP 
Proceedings (Lausanne) 2 (1984) 204-206. 

[54] D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, 
Nonlinear stability conditions and a priori estimates for 
barotropic hydrodynamics, Phys. Lett. 98A (1983) 15-21. 

[55] D.D. Holm and B.A. Kupershmidt, Lyapunov stability of 
relativistic fluid and plasma equilibria, Phys. Fluids, to 
appear (1985). 

[56] A.H. Taub, Relativistic hydrodynamics, in: Relativity 
Theory and Astrophysics 1. Relativity and Cosmology, 
J. Ehlers, ed., Lect. Appl. Math. 8 (AMS, New York, 1967) 
pp. 170-193. 

[57] D.D. Holm and B.A. Kupershmidt, Lyapunov stability 
conditions for a relativistic multifluid plasma, ICCP Pro- 
ceedings (Lausanne) 2 (1984). 

[58] G. Gimmsy, Constraints and covariant momentum maps 
in classical relativistic field theory (1984) preprint. 

[59] D.D. Holm and B.A. Kupershmidt, Relativistic fluid dy- 
namics as a Hamiltonian system, Phys. Lett. 101A (1984) 
23-26. 

[60] D.D. Holm and B.A. Kupershmidt, Relativistic magneto- 
hydrodynamics as a Hamiltonian system, Comptes Ren- 
dus, Serie I, Mathematique, to appear (1985). 

[61] D.D. Holm, J.E. Marsden and T. Ratiu, Nonlinear stabil- 
ity of Kelvin-Stuart cat's eyes flows, Proc. AMS-SIAM 
Summer Conference, Santa Fe, July, 1984, to appear. 

[62] D.D. Holm, Stability of planar multifluid plasma equi- 
libria by Arnold's method, Contemp. Math. AMS 28 
(1984) 25-50. 

[63] J.L. Friedman, Generic instability of rotating relativistic 
stars, Comm. Math. Phys. 62 (1978) 247-278. 

[64] D.D. Holm, J.E. Marsden and T. Ratiu, Momentum maps 
and convective coordinates for fluid dynamics, (1985) in 
preparation. 


